+0  
 
0
2681
1
avatar+1836 

$$Expand $(2x - 1)^5$.$$

 May 8, 2015

Best Answer 

 #1
avatar+23252 
+5

Beside the obvious way of multiplying this, factor by factor, you can use this expansion:

(a + b)5  =  5C· a5 · b05C1 · a4 · b15C2 · a3 · b2 + 5C3 · a2 · b3 + 5C4 · a1 · b4 + 5C5 · a0 · b5 

In this problem:  a = 2x     b = -1:

(2x - 1)5  =  5C0(2x)5(-1)0 + 5C1(2x)4(-1)1 + 5C2(2x)3(-1)2 + 5C3(2x)2(-1)3 + 5C4(2x)1(-1)4 + 5C5(2x)0(-1)5 

   =  (1)(32x5)(1) + (5)(16x4)(-1) + (10)(8x3)(1) + (10)(4x2)(-1) + (5)(2x)(1) + (1)(1)(-1)

   =   32x5 - 80x4 + 80x3 - 40x + 10x - 1

 May 9, 2015
 #1
avatar+23252 
+5
Best Answer

Beside the obvious way of multiplying this, factor by factor, you can use this expansion:

(a + b)5  =  5C· a5 · b05C1 · a4 · b15C2 · a3 · b2 + 5C3 · a2 · b3 + 5C4 · a1 · b4 + 5C5 · a0 · b5 

In this problem:  a = 2x     b = -1:

(2x - 1)5  =  5C0(2x)5(-1)0 + 5C1(2x)4(-1)1 + 5C2(2x)3(-1)2 + 5C3(2x)2(-1)3 + 5C4(2x)1(-1)4 + 5C5(2x)0(-1)5 

   =  (1)(32x5)(1) + (5)(16x4)(-1) + (10)(8x3)(1) + (10)(4x2)(-1) + (5)(2x)(1) + (1)(1)(-1)

   =   32x5 - 80x4 + 80x3 - 40x + 10x - 1

geno3141 May 9, 2015

1 Online Users