Alright, this is gonna be a long one.
first expand this whole thing
\(27t^3+36t^2+27t^2\sqrt{t}+19t\sqrt{t}+12t+3\sqrt{t}+1+\left(\sqrt{t}-3t+1\right)^3\)
\(=27t^3+36t^2+27t^2\sqrt{t}+19t\sqrt{t}+12t+3\sqrt{t}+1-27t^3+18t^2+27t^2\sqrt{t}-17t\sqrt{t}-6t+3\sqrt{t}+1\)
\(=27t^3-27t^3+36t^2+18t^2+27t^2\sqrt{t}+27t^2\sqrt{t}+19t\sqrt{t}-17t\sqrt{t}+12t-6t+3\sqrt{t}+3\sqrt{t}+1+1\) grouping like terms
simplify to get: \(54t^2+54t^2\sqrt{t}+2t\sqrt{t}+6t+6\sqrt{t}+2\)
you technically could group them together in parenthesis and stuff but im not doing that