+0  
 
0
130
2
avatar+701 

expanded form help 

 Sep 15, 2018
 #1
avatar
+1

Expand the following:
(2 x - (3 y^2)/4)^3

 

(2 x - (3 y^2)/4)^3 | = | sum_(k=0)^3 binomial(3, k) ((-3 y^2)/4)^(3 - k) (2 x)^k | 
 | = | binomial(3, 0) ((-3 y^2)/4)^3 (2 x)^0 + binomial(3, 1) ((-3 y^2)/4)^2 (2 x)^1 + binomial(3, 2) ((-3 y^2)/4)^1 (2 x)^2 + binomial(3, 3) ((-3 y^2)/4)^0 (2 x)^3 | : invisible comma 
-27/64 binomial(3, 0) y^6 + 9/8 binomial(3, 1) x y^4 - 3 binomial(3, 2) x^2 y^2 + 8 binomial(3, 3) x^3

 

The binomial coeffients comprise the 4^th row of Pascal's triangle:
(2 x)^3 - (33 (2 x)^2 y^2)/4 + 2×3 x ((-3 y^2)/4)^2 + ((-3 y^2)/4)^3

Multiply each exponent in 2 x by 2:
(2 x)^3 - (3×3×2^2 x^2 y^2)/4 + 2×3 x ((-3 y^2)/4)^2 + ((-3 y^2)/4)^3

(2 x)^3 - (34×3 x^2 y^2)/4 + 2×3 x ((-3 y^2)/4)^2 + ((-3 y^2)/4)^3

(4 x^2 (-3) y^2×3)/4 = 4/4×x^2 (-3) y^2×3 = x^2 (-3) y^2×3:
(2 x)^3 + -3×3 x^2 y^2 + 2×3 x ((-3 y^2)/4)^2 + ((-3 y^2)/4)^3

 

Multiply each exponent in (-3 y^2)/4 by 2:
(2 x)^3 - 3×3 x^2 y^2 + 2×3 x ((-3)/4)^2 y^(2×2) + ((-3 y^2)/4)^3

(2 x)^3 - 3×3 x^2 y^2 + 2 ((-3)/4)^2 3 x y^4 + ((-3 y^2)/4)^3

((-3)/4)^2 = (-3)^2/4^2:
(2 x)^3 - 3×3 x^2 y^2 + 2×(-3)^2/4^2 3 x y^4 + ((-3 y^2)/4)^3

(2 x)^3 - 3×3 x^2 y^2 + (2×9×3 x y^4)/4^2 + ((-3 y^2)/4)^3

(2 x)^3 - 3×3 x^2 y^2 + (2×9×3 x y^4)/16 + ((-3 y^2)/4)^3

(2 x)^3 - 3×3 x^2 y^2 + (9×3 x y^4)/8 + ((-3 y^2)/4)^3

(2 x)^3 - 3×3 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4)^3

 

Multiply each exponent in 2 x by 3:

2^3 x^3 - 3×3 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4
2×2^2 x^3 - 3×3 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4)^3
2×4 x^3 - 3×3 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4)^3

8 x^3 - 3×3 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4
8 x^3 + -9 x^2 y^2 + (27 x y^4)/8 + ((-3 y^2)/4)^3

 

Multiply each exponent in (-3 y^2)/4 by 3:
8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 + ((-3)/4)^3 y^(3×2)

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 + ((-3)/4)^3 y^6

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 + (-3)^3/4^3 y^6

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 + (-3^3 y^6)/4^
8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 - (3^3 y^6)/(4×4^2)
8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 - (3^3 y^6)/(4×16)

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 - (3^3 y^6)/64

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 - (3×3^2 y^6)/64

8 x^3 - 9 x^2 y^2 + (27 x y^4)/8 - (3×9 y^6)/64


8x^3 - 9x^2y^2 + (27xy^4)/8 - (27y^6)/64- or the 3rd on your list.

 Sep 15, 2018
 #2
avatar+27365 
+1

In general:  \((a-b)^3=a^3-3a^2b+3ab^2-b^3\)  so we can also do it like this:

 

\((2x-\frac{3}{4}y^2)^3\rightarrow (2x)^3-3(2x)^2(\frac{3}{4}y^2)+3(2x)(\frac{3}{4}y^2)^2-(\frac{3}{4}y^2)^3\\ \rightarrow 8x^3-9x^2y^2+\frac{27}{8}xy^4-\frac{27}{64}y^6\)

 

where \(a=2x \text{ and } b=\frac{3}{4}y^2\)

.

 Sep 16, 2018

19 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.