+0  
 
0
69
1
avatar+12 

If \(x\) is a real number such that \(2^{2x+3}=14\) , find \(2^x\). Thank you!

 Jul 31, 2020
 #1
avatar
-1

Solve for x over the real numbers:
2^(2 x + 3) = 14

Take the logarithm base 2 of both sides:
2 x + 3 = log(14)/log(2)

Subtract 3 from both sides:
2 x = log(14)/log(2) - 3

Divide both sides by 2:
 
x = log(14)/(2 log(2)) - 3/2 ≈0.403677

 Jul 31, 2020

25 Online Users

avatar