what are the last two digits of 4^2000 ?
or \(4^{2000} \equiv x \pmod {100}\)
\(\boxed{~ 4^{11} \equiv 4 \pmod{100} ~} \)
\(\small{ \begin{array}{rcl} && 4^{2000} \pmod {100} \\ &\equiv& 4^{11\cdot 181 + 9} \pmod {100}\\ &\equiv& 4^{11\cdot 181} \cdot 4^9 \pmod {100}\\ &\equiv& (\underbrace{4^{11}}_{\equiv 4 \pmod {100}})^{181} \cdot 4^9 \pmod {100}\\ &\equiv& 4^{181}\cdot 4^9 \pmod {100}\\\\ &\equiv& 4^{11\cdot 16 + 5} \pmod {100}\\ &\equiv& 4^{11\cdot 16} \cdot 4^5 \cdot 4^9 \pmod {100}\\ &\equiv& (\underbrace{4^{11}}_{\equiv 4 \pmod {100}})^{16} \cdot 4^5 \cdot 4^9 \pmod {100}\\ &\equiv& 4^{16} \cdot 4^5 \cdot 4^9 \pmod {100}\\ &\equiv& 4^{30} \pmod {100}\\\\ &\equiv& 4^{11\cdot 2 + 8} \pmod {100}\\ &\equiv& 4^{11\cdot 2} \cdot 4^8 \pmod {100}\\ &\equiv& (\underbrace{4^{11}}_{\equiv 4 \pmod {100}})^{2} \cdot 4^8 \pmod {100}\\ &\equiv& 4^{2} \cdot 4^8 \pmod {100}\\ &\equiv& 4^{10} \pmod {100}\\ &\equiv& 76\pmod {100} \end{array} }\)
The last two digits of \(4^{2000}\) is 76