+0  
 
0
266
3
avatar

2^(x-1)+2^(2+x)=144

Guest Aug 23, 2017
 #1
avatar+87604 
+1

2^(x-1)+2^(2+x) =144    we can write       

 

2^x / 2  + 2^2 *2^x  = 144

 

2^x /2 + 4* 2^x = 144     multiply through by 2

 

2^x + 8*2^x  = 288

 

9*2^x  = 288    divide both sides by 9

 

2^x  = 32       write 32  as 2^5

 

2^x  = 2^5

 

So....x  = 5

 

 

 

cool cool cool

CPhill  Aug 23, 2017
 #2
avatar
0

Solve for x :
2^(x - 1) + 2^(x + 2) = 144

Simplify and substitute y = 2^x.
2^(x - 1) + 2^(x + 2) = (9×2^x)/(2)
 = (9 y)/2:
(9 y)/2 = 144

Multiply both sides by 2/9:
y = 32

Substitute back for y = 2^x:
2^x = 32

32 = 2^5:
2^x = 2^5

Equate exponents of 2 on both sides: 
x = 5

Guest Aug 23, 2017
 #3
avatar+19832 
+1

2^(x-1)+2^(2+x)=144

 

\(\begin{array}{|rcll|} \hline 2^{x-1}+2^{2+x} &=& 144 \\ 2^{x-1}+2^{x+2} &=& 144 \quad & | \quad \cdot 2^3 \\ 2^{x-1}2^3+2^{x+2}2^3 &=& 144 *2^3 \\ 2^{x-1+3}+2^{x+2}*8 &=& 144 * 8 \\ 2^{x+2}+2^{x+2}*8 &=& 144 * 8 \\ 2^{x+2}*9 &=& 144 * 8 \quad & | \quad :9 \\ 2^{x+2} &=& \frac{144 * 8}{9} \\ 2^{x+2} &=& 16*8 \\ 2^{x+2} &=& 2^42^3 \\ 2^{x+2} &=& 2^{4+3} \\ 2^{x+2} &=& 2^{7} \\\\ x+2 &=& 7 \\ x&=& 7-2 \\ \mathbf{x} & \mathbf{=} & \mathbf{5} \\ \hline \end{array}\)

 

laugh

heureka  Aug 24, 2017

24 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.