We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Exponents

0
362
3

2^(x-1)+2^(2+x)=144

Aug 23, 2017

### 3+0 Answers

#1
+1

2^(x-1)+2^(2+x) =144    we can write

2^x / 2  + 2^2 *2^x  = 144

2^x /2 + 4* 2^x = 144     multiply through by 2

2^x + 8*2^x  = 288

9*2^x  = 288    divide both sides by 9

2^x  = 32       write 32  as 2^5

2^x  = 2^5

So....x  = 5   Aug 23, 2017
#2
0

Solve for x :
2^(x - 1) + 2^(x + 2) = 144

Simplify and substitute y = 2^x.
2^(x - 1) + 2^(x + 2) = (9×2^x)/(2)
= (9 y)/2:
(9 y)/2 = 144

Multiply both sides by 2/9:
y = 32

Substitute back for y = 2^x:
2^x = 32

32 = 2^5:
2^x = 2^5

Equate exponents of 2 on both sides:
x = 5

Aug 23, 2017
#3
+1

2^(x-1)+2^(2+x)=144

$$\begin{array}{|rcll|} \hline 2^{x-1}+2^{2+x} &=& 144 \\ 2^{x-1}+2^{x+2} &=& 144 \quad & | \quad \cdot 2^3 \\ 2^{x-1}2^3+2^{x+2}2^3 &=& 144 *2^3 \\ 2^{x-1+3}+2^{x+2}*8 &=& 144 * 8 \\ 2^{x+2}+2^{x+2}*8 &=& 144 * 8 \\ 2^{x+2}*9 &=& 144 * 8 \quad & | \quad :9 \\ 2^{x+2} &=& \frac{144 * 8}{9} \\ 2^{x+2} &=& 16*8 \\ 2^{x+2} &=& 2^42^3 \\ 2^{x+2} &=& 2^{4+3} \\ 2^{x+2} &=& 2^{7} \\\\ x+2 &=& 7 \\ x&=& 7-2 \\ \mathbf{x} & \mathbf{=} & \mathbf{5} \\ \hline \end{array}$$ Aug 24, 2017