+0  
 
0
32
2
avatar

What is the value of 4^(10)*8^(20)*16^(30)? Express your answer in the form a^b, where a and b are positive integers such that a is the least possible positive integer.

 Jun 23, 2022

Best Answer 

 #2
avatar+117487 
+2

4^(10)*8^(20)*16^(30)

\(4^{10}*8^{20}*16^{30}\\ =2^{2*10}*2^{3*20}*2^{4*30}\\ =\)

 

 

Now add the indices

 Jun 23, 2022
 #1
avatar
0

4^(10)*8^(20)*16^(30) ==2^200

 Jun 23, 2022
 #2
avatar+117487 
+2
Best Answer

4^(10)*8^(20)*16^(30)

\(4^{10}*8^{20}*16^{30}\\ =2^{2*10}*2^{3*20}*2^{4*30}\\ =\)

 

 

Now add the indices

Melody Jun 23, 2022

8 Online Users