We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
140
1
avatar

Express $\frac 1{1+\frac 1{1-\frac 1{1+i}}}$ in the form $a+bi$, where $a$ and $b$ are real numbers.

 

In case you have trouble reading that, here's a simpler version:

1/(1+1/(1-1/(1+i))).

 Sep 18, 2018
 #1
avatar
0

Simplify the following:
1/(1/(-1/(i + 1) + 1) + 1)

Multiply numerator and denominator of (-1)/(i + 1) by 1 - i:
1/(1/((-(-i + 1))/((i + 1) (-i + 1)) + 1) + 1)

(1 + i) (1 - i) = 1×1 + 1 (-i) + i×1 + i (-i) = 1 - i + i + 1 = 2:
1/(1/(1 - ((-i + 1))/2) + 1)

Put each term in 1 - (-i + 1)/2 over the common denominator 2: 1 - (-i + 1)/2 = 2/2 + (-1 + i)/2:
1/(1/(2/2 + (i - 1)/2) + 1)

2/2 + (i - 1)/2 = ((1 i - 1) + 2)/2:
1/(1/((2 - 1 + i)/2) + 1)

Multiply the numerator of 1/((2 - 1 + i)/2) by the reciprocal of the denominator. 1/((2 - 1 + i)/2) = (1×2)/(2 - 1 + i):
1/(2/(2 - 1 + i) + 1)

2 - 1 + i = (2 - 1) + i = 1 + i:
1/(2/(i + 1) + 1)

Multiply numerator and denominator of 2/(i + 1) by 1 - i:
1/((2 (-i + 1))/((i + 1) (-i + 1)) + 1)

(1 + i) (1 - i) = 1×1 + 1 (-i) + i×1 + i (-i) = 1 - i + i + 1 = 2:
1/((2 (-i + 1))/2 + 1)

(2 (-i + 1))/2 = 2/2×(-i + 1) = -i + 1:
1/(-i + 1 + 1)

1 + 1 - i = (1 + 1) - i = 2 - i:
1/(-i + 2)

Multiply numerator and denominator of 1/(-i + 2) by 2 + i:
(i + 2)/((-i + 2) (i + 2))

(2 - i) (2 + i) = 2×2 + 2 i - i×2 - i×i = 4 + 2 i - 2 i + 1 = 5:
(i + 2)/5 = 2/5 + i/5

 Sep 18, 2018

9 Online Users

avatar
avatar
avatar