Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1514
6
avatar

Hello,

I'm trying to help my daughter with her math assignment, but this one I can't figure out. Would appreciate help, thanks!

 

Let f(x)= ax / (2x+3)

Investigate if you can define the 'a' so that f(f(x))=x

 Nov 26, 2015

Best Answer 

 #2
avatar+26396 
+30

Hello,

I'm trying to help my daughter with her math assignment, but this one I can't figure out. Would appreciate help, thanks!

Let f(x)= ax / (2x+3)

Investigate if you can define the 'a' so that f(f(x))=x

 

f(x)=ax2x+3f(f(x))=f(ax2x+3)=xf(ax2x+3)=a(ax2x+3)2(ax2x+3)+3=xa(ax2x+3)2(ax2x+3)+3=xa(ax2x+3)=x[2(ax2x+3)+3]a22x+3=2(ax2x+3)+3|(2x+3)a2=2ax+3(2x+3)a2=2ax+6x+9a22xa6x9=0 ax2+bx+c=0x=b±b24ac2a a1,2=2x±(2x)24(6x9)2a1,2=2x±4x2+4(6x+9)2a1,2=2x±2x2+6x+92a1,2=x±x2+6x+9a1,2=x±(x+3)2a1,2=x±(x+3)a1=x+(x+3)a1=2x+3a2=x(x+3)a2=3

 

laugh

 Nov 26, 2015
 #1
avatar+23254 
+15

Since  f(x) = ax/(2x+3),  to find  f( f(x) ), replace the x=term in  ax/(2x+3)  wwith  ax/2x+3):

f( f(x) )  =  f( ax/(2x+3) )  =  [ a( ax/(2x+3) ) ] / [ 2( ax/(2x+3) ) + 3 ]

    =   [ a2x / (2x+3) ] / [ 2ax / (2x+3) + 3]

Assume that  x  isn't  -3/2:  multiply both the numerator and denominator by  2x + 3 and simplify:

    =  a2x / ( 2ax + 3(2x+3) ]

    =  a2x / ( 2ax + 6x + 9 ]

Since f( f(x) ) = x:     a2x / ( 2ax + 6x + 9 ]  =  x

Multiply both sides by  2ax + 6x + 9:     a2x  =  x(2ax + 6x + 9)

Assuming that x isn't 0, divide both sides by x:     a2  =  2ax + 6x + 9

--->     2ax + 6x  =  a2 - 9

--->    2x(a + 3)  =  (a + 3)(a - 3)

If a is not equal to -3, divide both sides by  a + 3:

--->   2x  =  a - 3

and    x  =  (a - 3) / 2                        

But, x could be zero (it checks in the original expression).

Also checking  -3/2  and  -3 -- they don't check.

So, the answer:  either  0  or  (a - 3)/2.

 Nov 26, 2015
 #2
avatar+26396 
+30
Best Answer

Hello,

I'm trying to help my daughter with her math assignment, but this one I can't figure out. Would appreciate help, thanks!

Let f(x)= ax / (2x+3)

Investigate if you can define the 'a' so that f(f(x))=x

 

f(x)=ax2x+3f(f(x))=f(ax2x+3)=xf(ax2x+3)=a(ax2x+3)2(ax2x+3)+3=xa(ax2x+3)2(ax2x+3)+3=xa(ax2x+3)=x[2(ax2x+3)+3]a22x+3=2(ax2x+3)+3|(2x+3)a2=2ax+3(2x+3)a2=2ax+6x+9a22xa6x9=0 ax2+bx+c=0x=b±b24ac2a a1,2=2x±(2x)24(6x9)2a1,2=2x±4x2+4(6x+9)2a1,2=2x±2x2+6x+92a1,2=x±x2+6x+9a1,2=x±(x+3)2a1,2=x±(x+3)a1=x+(x+3)a1=2x+3a2=x(x+3)a2=3

 

laugh

heureka Nov 26, 2015
 #3
avatar
+5

Very kind thank you geno3141 and heureka for taking your time to help us!

We are digesting! smiley Have a nice day!

 Nov 26, 2015
 #4
avatar+118696 
0

Yes, this one looks reallly interesting.   Thanks Geno and Heureka.

I have put it aside for when I have more time. I want to look at both your answers  :)

 Nov 27, 2015
 #5
avatar+26396 
+30

Hello,

I'm trying to help my daughter with her math assignment, but this one I can't figure out. Would appreciate help, thanks!

Let f(x)= ax / (2x+3)

Investigate if you can define the 'a' so that f(f(x))=x

 

New edit, without mistake: blush

 

a1=x+(x+3)a1=2x+3a2=x(x+3)a2=3

 

laugh

 Nov 27, 2015
edited by heureka  Nov 27, 2015
edited by heureka  Nov 27, 2015
 #6
avatar
+5

Thank you heureka! That solves one of our question marks! cool

 Nov 27, 2015

0 Online Users