+0  
 
0
1
2885
5
avatar

ıf tan(x)=4/5 .. x = ?

 Nov 17, 2014

Best Answer 

 #5
avatar+33661 
+5

Use tan-1, which is atan on the calculator.

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right)} = {\mathtt{38.659\: \!808\: \!254\: \!09^{\circ}}}$$

 

This is the first quadrant solution.  There is also a third quadrant solution obtained by adding 180° to this.

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{38.659\: \!808\: \!254\: \!09}}^\circ\right)} = {\frac{{\mathtt{4}}}{{\mathtt{5}}}} = {\mathtt{0.8}}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{180}}{\mathtt{\,\small\textbf+\,}}{\mathtt{38.659\: \!808\: \!254\: \!09}}\right)} = {\frac{{\mathtt{4}}}{{\mathtt{5}}}} = {\mathtt{0.8}}$$

.

 Nov 17, 2014
 #1
avatar+7188 
0

Ummmm.  what?

 Nov 17, 2014
 #2
avatar
0

ı need to find the angle

 Nov 17, 2014
 #3
avatar+7188 
0

Oh.......................

 Nov 17, 2014
 #4
avatar
0

how can ı find it ??

 Nov 17, 2014
 #5
avatar+33661 
+5
Best Answer

Use tan-1, which is atan on the calculator.

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{4}}}{{\mathtt{5}}}}\right)} = {\mathtt{38.659\: \!808\: \!254\: \!09^{\circ}}}$$

 

This is the first quadrant solution.  There is also a third quadrant solution obtained by adding 180° to this.

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{38.659\: \!808\: \!254\: \!09}}^\circ\right)} = {\frac{{\mathtt{4}}}{{\mathtt{5}}}} = {\mathtt{0.8}}$$

 

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{180}}{\mathtt{\,\small\textbf+\,}}{\mathtt{38.659\: \!808\: \!254\: \!09}}\right)} = {\frac{{\mathtt{4}}}{{\mathtt{5}}}} = {\mathtt{0.8}}$$

.

Alan Nov 17, 2014

0 Online Users