+0  
 
0
172
2
avatar+96 

Factor z^2 − z − 3 = 0

 Aug 27, 2018

Best Answer 

 #1
avatar+377 
+3

This quadratic, \(z^2 - z - 3 = 0\) is a bit trickier. For this one, we need to use the quadratic formula, which is \(\frac{-b ± \sqrt{b^2 - 4ac}}{2a}\).

 

When we plug in the values of \(a, b,\) and \(c\), we get \(\frac{-(-1) ± \sqrt{(-1)^2 - 4(1)(-3)}}{2(1)} = \frac{1±\sqrt{13}}{2}\). This means \(z = \frac{1}{2} + \frac{1}{2}\sqrt{13}\) or \(z = \frac{1}{2} + \frac{-1}{2}\sqrt{13}\).

 

- Daisy

 Aug 27, 2018
 #1
avatar+377 
+3
Best Answer

This quadratic, \(z^2 - z - 3 = 0\) is a bit trickier. For this one, we need to use the quadratic formula, which is \(\frac{-b ± \sqrt{b^2 - 4ac}}{2a}\).

 

When we plug in the values of \(a, b,\) and \(c\), we get \(\frac{-(-1) ± \sqrt{(-1)^2 - 4(1)(-3)}}{2(1)} = \frac{1±\sqrt{13}}{2}\). This means \(z = \frac{1}{2} + \frac{1}{2}\sqrt{13}\) or \(z = \frac{1}{2} + \frac{-1}{2}\sqrt{13}\).

 

- Daisy

dierdurst Aug 27, 2018
 #2
avatar+98141 
+2

This is an irreducible quadratic  [ cannot be factored  ]

 

 

cool cool cool

 Aug 27, 2018

22 Online Users

avatar
avatar
avatar
avatar
avatar