+0  
 
+1
417
3
avatar+50 

Find the last two digits of the following sum:

5! + 10! + 15! +... + 100!

 Sep 5, 2017
 #1
avatar+17 
0

The last two zero's?frown

 Sep 5, 2017
 #2
avatar
+2

sum_(n=1)^20 (5 n)! = 93326215454274131171424014083629874498929842578166214433940153388687946517415655599163396465910182277066190137342795918966177385078001619556987788165518636920. This is because of 5! which is =120. The rest of the terms all end in at least 2 zeros.

 Sep 5, 2017
 #3
avatar+97576 
+2

Find the last two digits of the following sum:

5! + 10! + 15! +... + 100!

 

20!=2*5*10*other numbers = 100*other numbers      ends in  00

All the factorials bigger than 20! also end in  00  

So add these all up and we get a number that ends in   00

 

So what is left?

 

5!+10!+15!  

 

5! = 2*3*4*5 = 10*12 = 120  the last two digits are 20

10!= 120*6*7*8*9*10 = 6*7*8*9*1200  the last two digits are 00

It follows that the last 2 digits of 15! must also be   00

 

So the only one that does not end in 00 is   5! which ends in  20

 

So add them all together and the last two digits must be 20

 

Just like our guest already said :)

 Sep 5, 2017

36 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.