+0  
 
0
256
1
avatar

don't know how you do this

Guest Oct 30, 2017

Best Answer 

 #1
avatar
0

Factor  a^2b^4 - 4b^2 + 2a^2b^2 - 8

Factor the following:
a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8

 

Factor terms by grouping. a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8 = (2 a^2 b^2 + a^2 b^4) + (-4 b^2 - 8) = a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
a^2 b^2 (b^2 + 2) - 4 (b^2 + 2)

 

Factor b^2 + 2 from a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
(b^2 + 2) (a^2 b^2 - 4)

a^2 b^2 - 4 = (a b)^2 - 2^2:
(a b)^2 - 2^2 (b^2 + 2)

 

Factor the difference of two squares. (a b)^2 - 2^2 = (a b - 2) (a b + 2):
(ab - 2) (ab + 2) (b^2 + 2)  OR (1)

Guest Oct 30, 2017
 #1
avatar
0
Best Answer

Factor  a^2b^4 - 4b^2 + 2a^2b^2 - 8

Factor the following:
a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8

 

Factor terms by grouping. a^2 b^4 - 4 b^2 + 2 a^2 b^2 - 8 = (2 a^2 b^2 + a^2 b^4) + (-4 b^2 - 8) = a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
a^2 b^2 (b^2 + 2) - 4 (b^2 + 2)

 

Factor b^2 + 2 from a^2 b^2 (b^2 + 2) - 4 (b^2 + 2):
(b^2 + 2) (a^2 b^2 - 4)

a^2 b^2 - 4 = (a b)^2 - 2^2:
(a b)^2 - 2^2 (b^2 + 2)

 

Factor the difference of two squares. (a b)^2 - 2^2 = (a b - 2) (a b + 2):
(ab - 2) (ab + 2) (b^2 + 2)  OR (1)

Guest Oct 30, 2017

46 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.