+0  
 
-1
111
1
avatar+167 

For a positive integer, g, let \(p(g)=g^2+g+1\). Find the largest positive integer g such that \(​​​​1000 p(1^2) p(2^2) \dotsm p(g^2) \ge p(1)^2 p(2)^2 \dotsm p(g)^2.\)

 Oct 15, 2019
 #1
avatar
0

The answer is 14.

 Oct 29, 2019

14 Online Users

avatar
avatar