+0  
 
0
47
1
avatar

\({-3x^2-12≤3x^2-5x-68}\)

Guest Jun 7, 2018
edited by Guest  Jun 7, 2018

Best Answer 

 #1
avatar+19495 
+2

solving this inequality?

\(-3x^2-12 \le 3x^2-5x-68\)

-3x^2-12 \le 3x^2-5x-68

 

\(\begin{array}{|rcll|} \hline -3x^2-12 &\le& 3x^2-5x-68 \\ -3x^2-12 -(3x^2-5x-68 ) &\le& 0 \\ -6x^2 + 5x + 56 &\le& 0 \\ \hline \end{array}\)

 

Now all we have to do is find the zeroes of \( y = -6x^2 + 5x + 56\)

 

\(\begin{array}{|rcll|} \hline -6x^2 + 5x + 56 &=& 0 \\ x &=& \frac{-5\pm \sqrt{25-4\cdot(-6)\cdot 56 } }{2\cdot(-6)} \\ x &=& \frac{-5\pm \sqrt{1369 } }{-12} \\ x &=& \frac{-5\pm 37 }{-12} \\\\ x_1 &=& \frac{-5+37}{-12} \\ x_1 &=& \frac{32}{-12} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{-\frac{8}{3}} \\\\ x_2 &=& \frac{-5-37}{-12} \\ x_2 &=& \frac{-42}{-12} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{\frac{7}{2}} \\ \hline \end{array}\)

 

Since \(y = -6x^2 + 5x + 56\)  graphs as a down parabola,
the quadratic is below the axis on the ends:

 

Then the solution is:
    \(x \le -\frac{8}{3} \quad \text{ or } \quad x \ge \frac{7}{2}\)

 

laugh

heureka  Jun 7, 2018
 #1
avatar+19495 
+2
Best Answer

solving this inequality?

\(-3x^2-12 \le 3x^2-5x-68\)

-3x^2-12 \le 3x^2-5x-68

 

\(\begin{array}{|rcll|} \hline -3x^2-12 &\le& 3x^2-5x-68 \\ -3x^2-12 -(3x^2-5x-68 ) &\le& 0 \\ -6x^2 + 5x + 56 &\le& 0 \\ \hline \end{array}\)

 

Now all we have to do is find the zeroes of \( y = -6x^2 + 5x + 56\)

 

\(\begin{array}{|rcll|} \hline -6x^2 + 5x + 56 &=& 0 \\ x &=& \frac{-5\pm \sqrt{25-4\cdot(-6)\cdot 56 } }{2\cdot(-6)} \\ x &=& \frac{-5\pm \sqrt{1369 } }{-12} \\ x &=& \frac{-5\pm 37 }{-12} \\\\ x_1 &=& \frac{-5+37}{-12} \\ x_1 &=& \frac{32}{-12} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{-\frac{8}{3}} \\\\ x_2 &=& \frac{-5-37}{-12} \\ x_2 &=& \frac{-42}{-12} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{\frac{7}{2}} \\ \hline \end{array}\)

 

Since \(y = -6x^2 + 5x + 56\)  graphs as a down parabola,
the quadratic is below the axis on the ends:

 

Then the solution is:
    \(x \le -\frac{8}{3} \quad \text{ or } \quad x \ge \frac{7}{2}\)

 

laugh

heureka  Jun 7, 2018

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.