What would x^6-y^6 be when completely factored?
$$\textcolor[rgb]{1,0,0}{
a^3 + b^3 = (a + b)(a^2-ab + b^2)
}\\
\textcolor[rgb]{1,0,0}{
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
} \\
(a^6-b^6)=(a^3 + b^3)*(a^3 - b^3 )=(a + b)(a^2-ab + b^2)(a - b)(a^2 + ab + b^2)$$
$$a=x \text{ and } b=y$$$$(x^6-y^6)=(x + y)(x^2-xy + y^2)(x - y)(x^2 + xy + y^2)$$
There are a few factoring forms worth knowing, three of which are:
--- Difference of squares: A² - B² = (A + B)(A - B)
--- Difference of cubes: A³ - B³ = (A - B)(A² + AB + B²)
--- Sum of cubes: A³ + B³ = (A + B)(A² - AB + B²)
In x^6 - y^6, first use difference of squares:
= (x³)² - (y³)² to get: (x³ + y³)(x³ - y³)
Now use both sum of cubes and difference of cubes:
= [ (x - y)(x² + xy + y²) ][ (x + y)(x² - xy + y²) ]
= (x - y)(x + y)(x² + xy + y²)(x² - xy + y²)
What would x^6-y^6 be when completely factored?
$$\textcolor[rgb]{1,0,0}{
a^3 + b^3 = (a + b)(a^2-ab + b^2)
}\\
\textcolor[rgb]{1,0,0}{
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
} \\
(a^6-b^6)=(a^3 + b^3)*(a^3 - b^3 )=(a + b)(a^2-ab + b^2)(a - b)(a^2 + ab + b^2)$$
$$a=x \text{ and } b=y$$$$(x^6-y^6)=(x + y)(x^2-xy + y^2)(x - y)(x^2 + xy + y^2)$$