Completely factor the following expression:
(9x^5 + 25x^3 - 4) - (x^5 - 8x^3 - 4)
(9x^5+25x^3- 4) - (x^5 - 8x^3 - 4) = (9-1)x^5 + (25+8)x^3 + (-4+4) = 8x^5 + 33x^3
Hey there, Guest!
So, first, we need to distribute the negative sign:
\(=9x^5+25x^3−4+−1(x^5−8x^3−4)\)
\(=9x^5+25x^3+−4+−1x^5+−1(−8x^3)+(−1)(−4)\)
\(=9x^5+25x^3+−4+−x^5+8x^3+4 \)
Then, we can combine like terms:
\(=9x^5+25x^3+−4+−x^5+8x^3+4\)
\(=(9x^5+−x^5)+(25x^3+8x^3)+(−4+4)\)
\(=8x^5+33x^3\)
In case you missed that, the answer is:
\(=8x^5+33x^3\)
Hope this helped! :)
( ゚д゚)つ Bye