(a + 5)2 = (a + 5)(a + 5) = a(a) + (a)(5) + (5)(a) + (5)(5) = a2 + 5a + 5a + 25 = a2 + 10a + 25
(a - 5)2 = (a - 5)(a - 5) = a(a) + (a)(-5) + (-5)(a) + (-5)(-5) = a2 - 5a - 5a + 25 = a2 - 10a + 25
(a +5)2 - (a - 5)2 = [a2 + 10a + 25] - [a2 - 10a + 25] = a2 + 10a + 25 - a2 + 10a - 25 = 20a
Yes; it's correct!
Simplify the following:
(a+5)^2-(a-5)^2
(a+5) (a+5) = (a) (a) + (a) (5) + (5) (a) + (5) (5) = a^2+5 a+5 a+25 = a^2+10 a+25:
a^2+10 a+25-(a-5)^2
(a-5) (a-5) = (a) (a) + (a) (-5) + (-5) (a) + (-5) (-5) = a^2-5 a-5 a+25 = a^2-10 a+25:
25+10 a+a^2-a^2-10 a+25
-(a^2-10 a+25) = -a^2+10 a-25:
25+10 a+a^2+-a^2+10 a-25
Grouping like terms, 25+10 a+a^2-25+10 a-a^2 = (10 a+10 a)+(a^2-a^2)+(25-25):
(10 a+10 a)+(a^2-a^2)+(25-25)
10 a+10 a = 20 a:
20 a+(a^2-a^2)+(25-25)
a^2-a^2 = 0:
20 a+(25-25)
25-25 = 0:
Answer: |20a IT IS TRUE!!.