+0  
 
0
813
2
avatar

what adds to -1 but multiplies to -60

 Mar 18, 2017

Best Answer 

 #2
avatar+129846 
+5

x + y  = -1      →  y = -1 - x     (1)

x*y   = - 60    (2)

 

Put (1) into (2)

 

x (-1 - x)  = -60

 

-x - x^2  = -60   multiply through by -1  and rearrange

 

x^2 + x - 60   =   0     solving for x   we have

 

 

x =  [ - 1 + sqrt(241)] / 2    and y   =  [ - 1 - sqrt(241)] / 2        or

 

x = [ - 1 - sqrt(241)] / 2     and  y  =  [ - 1 + sqrt(241)] / 2

 

 

cool cool cool

 Mar 18, 2017
 #1
avatar+9479 
+6

Technically, the two numbers are:

\(\frac{-1+\sqrt{241}}{2} \text{ . . .and. . . } \frac{-1-\sqrt{241}}{2}\)

 

I found just it by using the quadratic formula on this equation:

x2 - x - 60 = 0

 

There are no integers that add to -1 but multiply to -60.

 

Does your problem look like this:

x2 - x - 60 = 0

 

Or is there a number in front of the x2  ?

 Mar 18, 2017
edited by hectictar  Mar 18, 2017
 #2
avatar+129846 
+5
Best Answer

x + y  = -1      →  y = -1 - x     (1)

x*y   = - 60    (2)

 

Put (1) into (2)

 

x (-1 - x)  = -60

 

-x - x^2  = -60   multiply through by -1  and rearrange

 

x^2 + x - 60   =   0     solving for x   we have

 

 

x =  [ - 1 + sqrt(241)] / 2    and y   =  [ - 1 - sqrt(241)] / 2        or

 

x = [ - 1 - sqrt(241)] / 2     and  y  =  [ - 1 + sqrt(241)] / 2

 

 

cool cool cool

CPhill Mar 18, 2017

1 Online Users

avatar