+0  
 
0
796
2
avatar

Mark’s garden is a rectangle that is (4a+96)/(a+15) meters long and (4a+24)/(a+15) meters wide. If Mark decides to fence his garden, what would the total length of fencing material required be?

 Apr 30, 2016
 #1
avatar
0

2 ((4 a+96)/(a+15)+(4 a+24)/(a+15))

(4 a+96)/(a+15) = 96/(a+15)+(4 a)/(a+15):
2 (96/(a+15)+(4 a)/(a+15)+(4 a+24)/(a+15))

(4 a+24)/(a+15) = 24/(a+15)+(4 a)/(a+15):
2 (96/(a+15)+(4 a)/(a+15)+24/(a+15)+(4 a)/(a+15))

Grouping like terms, 96/(a+15)+(4 a)/(a+15)+24/(a+15)+(4 a)/(a+15) = ((4 a)/(a+15)+(4 a)/(a+15))+(96/(a+15)+24/(a+15)):
2 (((4 a)/(a+15)+(4 a)/(a+15))+(96/(a+15)+24/(a+15)))

4 a/(a+15)+4 a/(a+15) = 8 a/(a+15):
2 ((8 a)/(a+15)+(96/(a+15)+24/(a+15)))

96 1/(a+15)+24 1/(a+15) = 120 1/(a+15):
2 ((8 a)/(a+15)+120/(a+15))

2 (120/(a+15)+(8 a)/(a+15)) = (2×120)/(a+15)+2×(8 a)/(a+15):
(2×120)/(a+15)+(2×8 a)/(a+15)

2×120  =  240:
240/(a+15)+(2×8 a)/(a+15)

2×8  =  16:
Answer: |  240/(a+15)+(16 a)/(a+15)

 

NO MATTER WHAT THE VALUE OF a, THE MAXIMUM PERIMETER WILL ALWAYS BE 16.

 Apr 30, 2016
 #2
avatar
0

(2 (4a+96) + 2 (4a+24))/(a+15)  Meters

(8a + 192 + 8a + 48)/(a+15)

(16a + 240)/(a+15)   Meters in length

16 (a+15)/(a+15) = 16 Meters

 Apr 30, 2016
edited by Guest  Apr 30, 2016

2 Online Users

avatar