+0  
 
-2
48
2
avatar

1. In the diagram below, \(\overline{PQ}\) is tangent at \(P\) to the circle with center \(O\), point \(S\) is inside the circle, and \(\overline{QS}\) intersects the circle at \(R\). If \(QR = RS = 3\)\(OS=2\), and \(PQ=6\), then find the radius of the circle.

 

 

2. In right triangle \(ABC\), the length of side \(\overline{AC}\) is \(8\) the length of side \(\overline{BC}\) is \(6\) and \(\angle C = 90^\circ.\) The circumcircle of triangle \(ABC\) is drawn. The angle bisector of \(\angle ACB\) meets the circumcircle at point \(M.\) Find the length \(CM.\)

 

Thanks!
 

 Apr 5, 2020
 #1
avatar
0

1. By power of a point, the radius is 3*sqrt(2).

 

2. By power of a point, CM = 4*sqrt(3).

 Apr 5, 2020
 #2
avatar
0

Those answers were incorrect. Do you have any other methods?

 Apr 5, 2020

18 Online Users

avatar
avatar
avatar
avatar