+0  
 
0
732
4
avatar

What is the whole order of Fibonacci numbers?

 Feb 24, 2016

Best Answer 

 #2
avatar+129845 
+10

The nth Fibonacci number is given by :

 

F(n)  = [ Phi^n  - [-phi]^n ]  / √ 5 

 

Where  Phi  =  [  1 + √5] / 2

 

And phi  =  2 / [ 1 + √5 ]

 

 

cool cool cool

 Feb 24, 2016
 #1
avatar+5265 
+10

I can give you about 10-15 numbers in the sequence.

 

1,1,2,3,5,8,13,21,34,55,89

 

There's 11. Anyone else want to continue on afterwards?

 Feb 24, 2016
 #2
avatar+129845 
+10
Best Answer

The nth Fibonacci number is given by :

 

F(n)  = [ Phi^n  - [-phi]^n ]  / √ 5 

 

Where  Phi  =  [  1 + √5] / 2

 

And phi  =  2 / [ 1 + √5 ]

 

 

cool cool cool

CPhill Feb 24, 2016
 #3
avatar+8262 
+5

Well, this is all about adding the number that is before that number with your answer. 
FOR EXAMPLE:

 

 

1+1=2

 

2+1=3

 

3+2=5

 

5+3=8

 

and so on.

 Feb 24, 2016
 #4
avatar+26387 
+5

What is the whole order of Fibonacci numbers?

 

 

\(\text{Golden Ratio } = \varphi \\ \varphi =\frac{ 1+\sqrt{5} } {2}\\ \varphi = 1.61803398875\dots\)

 

Fibonacci numbers:

\(f_n = \dfrac{ \varphi^n - (1-\varphi)^n } {\sqrt{5}}\)

 

Sequence below zero:

\(f_{-n} = (-1)^{n+1}\cdot f_n\)

\(\begin{array}{rrrrrrrrrrrrrrrrrrrr} \hline n &=& \dots &-6 &-5 &-4 &-3 &-2 &-1 &0 &1 &2 &3 &4 &5 &6 &\dots \\ \hline f_n &=& \dots &-8 &5 &-3 &2 &-1 &1 &0 &1 &1 &2 &3 &5 &8 &\dots \\ \hline \end{array} \)

 

laugh

 Feb 25, 2016

3 Online Users

avatar
avatar
avatar