+0  
 
0
33
2
avatar

Find 2^{-1} mod{185}, as a residue modulo 185. (Give an answer between 0 and 184, inclusive.)

Guest Jul 29, 2018
 #1
avatar
0

If a number is congruent to 2^(-1), it basically means that when multiplied by 2, it is congruent to 1 mod 185. So the answer is 93.

Guest Jul 29, 2018
 #2
avatar+19835 
0

Find 2^{-1} mod{185}, as a residue modulo 185. (Give an answer between 0 and 184, inclusive.)

 

\(\begin{array}{rcll} \text{Let} \\ & 2\cdot 2^{-1} \equiv 1 \pmod{185} \\ \end{array} \)

 

\(\begin{array}{rcll} \text{Let} \\ & 2\cdot 92 = 184 \equiv -1 \pmod {185} \\ \end{array} \)

 

\(\begin{array}{llcll} \text{square this equation: } \\ & (2\cdot 92)(2\cdot 92) &\equiv& (-1)(-1) \pmod{185} \\ & (2) (92^2\cdot 2) &\equiv& 1 \pmod{185} \\ & (2) (16928) &\equiv& 1 \pmod{185} \quad | \quad 16928 \equiv 93 \pmod{185} \\ & (2)\underbrace{(93)}_{=(2)^{-1}} &\equiv& 1 \pmod{185} \\ \end{array}\)

 

\(\text{So $2^{-1}=\boxed{93}$ is the multiplicative inverse to $2$ modulo $185$}.\)

 

laugh

heureka  Jul 30, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.