+0  
 
0
136
1
avatar

Find $\displaystyle{ \frac{2}{1 + 2\sqrt{3}} + \frac{3}{2 - \sqrt{3}}}$, and write your answer in the form $\displaystyle \frac{A + B\sqrt{3}}{C}$, with the fraction in lowest terms and $A > 0$. What is $A+B+C$?

Guest Jan 13, 2018
Sort: 

1+0 Answers

 #1
avatar+86649 
+2

 

 

Convert   :\( $\displaystyle{ \frac{2}{1 + 2\sqrt{3}} + \frac{3}{2 - \sqrt{3}}}$\)

 

To the form  : \( $\displaystyle \frac{A + B\sqrt{3}}{C}$\)

 

Where  \($A > 0$\)

 

And find  \($A+B+C$?\)

 

 

[  2 * (2 - √3)  +  3 ( 1 + 2√3)  ]  /  [  ( 1 + 2 √3)  ( 2 - √3) ]  =

 

[ 4 - 2√3+ 3 + 6√3 ]  /  [ 2 + 4√3 - √3 - 6 ]   =

 

[   7 + 4√3 ]  /  [ 3√3 - 4]

 

[   7 + 4√3 ]  *  [ 3√3 + 4]   /   [  ( 3√3 - 4) (3√3 + 4 ) ]

 

[ 21√3 + 36 + 28 + 16√3]  / [ 27 - 16 ]  

 

[ 64 + 37√3]  /  11

 

So.....  A  = 64, B = 37  , C  =  11

 

So

 

A + B + C  =     112

 

 

cool cool cool

CPhill  Jan 13, 2018
edited by CPhill  Jan 13, 2018

5 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy