+0  
 
0
228
1
avatar

Find $\displaystyle{ \frac{2}{1 + 2\sqrt{3}} + \frac{3}{2 - \sqrt{3}}}$, and write your answer in the form $\displaystyle \frac{A + B\sqrt{3}}{C}$, with the fraction in lowest terms and $A > 0$. What is $A+B+C$?

Guest Jan 13, 2018
 #1
avatar+91217 
+2

 

 

Convert   :\( $\displaystyle{ \frac{2}{1 + 2\sqrt{3}} + \frac{3}{2 - \sqrt{3}}}$\)

 

To the form  : \( $\displaystyle \frac{A + B\sqrt{3}}{C}$\)

 

Where  \($A > 0$\)

 

And find  \($A+B+C$?\)

 

 

[  2 * (2 - √3)  +  3 ( 1 + 2√3)  ]  /  [  ( 1 + 2 √3)  ( 2 - √3) ]  =

 

[ 4 - 2√3+ 3 + 6√3 ]  /  [ 2 + 4√3 - √3 - 6 ]   =

 

[   7 + 4√3 ]  /  [ 3√3 - 4]

 

[   7 + 4√3 ]  *  [ 3√3 + 4]   /   [  ( 3√3 - 4) (3√3 + 4 ) ]

 

[ 21√3 + 36 + 28 + 16√3]  / [ 27 - 16 ]  

 

[ 64 + 37√3]  /  11

 

So.....  A  = 64, B = 37  , C  =  11

 

So

 

A + B + C  =     112

 

 

cool cool cool

CPhill  Jan 13, 2018
edited by CPhill  Jan 13, 2018

28 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.