We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Find a complex number $z$ such that the real part and imaginary part of $z$ are both integers, and such that $$\(z\overline z = 89\).$$

the z with a line over it would equal to a-bi when z=a+bi

michaelcai Dec 12, 2017

#1**+1 **

(a + bi) (a - bi) = 89

a^2 + b^2 = 89

One possibility

a = 8, b = 5

So...... z = 8 + 5i is one solution

CPhill Dec 12, 2017

#2**+2 **

Find a complex number $z$ such that the real part and imaginary part of $z$ are both integers, and such that $$z\overline z = 89.$$ The z with a line over it would equal to a-bi when z=a+bi

\(\begin{array}{|rcl|rcl|} \hline z\overline z &=& 89 & z\overline z &=& (a+bi)(a-bi)\\ && & &=& a^2+b^2 \\ a^2+b^2 &=& 89 \\ \hline \end{array}\)

The factorisation of \(89\) is \(89^1\), because \(89\) is a** prime number**.

Because \(89 \equiv 1 \pmod 4\) there are \(4\cdot ( \underbrace{1}_{\text{exponent of } 89} + 1 ) = 8 \) solutions,

\(\begin{array}{|r|r|r|r|r|} \hline & & a & b & z \\ \hline 1 & 8^2 + 5^2 = 89 & 8 & 5 & 8+5i \\ 2 & 5^2 + 8^2 = 89 & 5 & 8 & 5+8i \\ 3 & (-8)^2 + 5^2 = 89 & -8 & 5 & -8+5i \\ 4 & 5^2 + (-8)^2 = 89 & 5 & -8 & 5-8i \\ 5 & 8^2 + (-5)^2 = 89 & 8 & -5 & 8-5i \\ 6 & (-5)^2 + 8^2 = 89 & -5 & 8 & -5+8i \\ 7 & (-8)^2 + (-5)^2 = 89 & -8 & -5 & -8-5i \\ 8 & (-5)^2 + (-8)^2 = 89 & -5 & -8 & -5-8i \\ \hline \end{array} \)

heureka Dec 12, 2017