We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
877
1
avatar+603 

Find a linear inequality with the following solution set. Each grid line represents one unit.

 

[asy]
size(200);
fill((-4,5)--(-5,5)--(-5,-5)--(5,-5)--(5,-4)--cycle,yellow);

real ticklen=3;
real tickspace=2;

real ticklength=0.1cm;
real axisarrowsize=0.14cm;
pen axispen=black+1.3bp;
real vectorarrowsize=0.2cm;
real tickdown=-0.5;
real tickdownlength=-0.15inch;
real tickdownbase=0.3;
real wholetickdown=tickdown;
void rr_cartesian_axes(real xleft, real xright, real ybottom, real ytop, real xstep=1, real ystep=1, bool useticks=false, bool complexplane=false, bool usegrid=true) {
import graph;
real i;
if(complexplane) {
label("$\textnormal{Re}$",(xright,0),SE);
label("$\textnormal{Im}$",(0,ytop),NW);
} else {
label("$x$",(xright+0.4,-0.5));
label("$y$",(-0.5,ytop+0.2)); 
}

ylimits(ybottom,ytop);
xlimits( xleft, xright);
real[] TicksArrx,TicksArry;

for(i=xleft+xstep; i if(abs(i) >0.1) {
TicksArrx.push(i);
}
}
for(i=ybottom+ystep; i if(abs(i) >0.1) {
TicksArry.push(i);
}
}

if(usegrid) {
xaxis(BottomTop(extend=false), Ticks("%", TicksArrx ,pTick=gray(0.1),extend=true),p=invisible);//,above=true);
yaxis(LeftRight(extend=false),Ticks("%", TicksArry ,pTick=gray(0.1),extend=true), p=invisible);//,Arrows);
}
if(useticks) {
xequals(0, ymin=ybottom, ymax=ytop, p=black, Ticks("%",TicksArry , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=black, Ticks("%",TicksArrx , pTick=black+0.8bp,Size=ticklength), above=true, Arrows(size=axisarrowsize));

} else {
xequals(0, ymin=ybottom, ymax=ytop, p=axispen, above=true, Arrows(size=axisarrowsize));
yequals(0, xmin=xleft, xmax=xright, p=axispen, above=true, Arrows(size=axisarrowsize));
}
};
draw((-4,5)--(5,-4),red,Arrows(size=axisarrowsize));
rr_cartesian_axes(-5,5,-5,5);

for( int i = -4; i <= 4; ++i) {
draw((i,-5)--(i,5));
draw((-5,i)--(5,i));
}

[/asy]

 

 

 

(Give your answer in "standard form"  $ax+by+c>0$ or $ax+by+c\geq0$ where a,b, and c are integers with no common factor greater than 1.)

 Apr 2, 2018
 #1
avatar
0

Um

I dont know how to solve this...indecision

 Aug 30, 2018

13 Online Users

avatar
avatar