+0  
 
0
55
2
avatar+461 

Find a monic quartic polynomial f(x) with rational coefficients whose roots include x=3-i\sqrt[4]2 . Give your answer in expanded form.

waffles  Jan 4, 2018
Sort: 

2+0 Answers

 #1
avatar+1602 
0

waffles, I see that the phrase "whose roots include x=3-i\sqrt[4]2" has a typo, I presume. Can you clarify if the 2 is included inside of the square root, whether it should be omitted, or whether it is something else entirely?

TheXSquaredFactor  Jan 4, 2018
 #2
avatar+81023 
+1

 

 

If   3 -  4√2 i    is a root, then so is the conjugate   3 +  4√2 i

 

Let  the polynomial we are looking for be P(x)

 

And  suppose that P(x)  can be written as  Q(x) * R(x)

 

So ....let Q(x) be  formed by

 

( x -  ( 3 - 4√2 i) )  ( x -  (3  + 4√2 i) )   =

 

[ ( (x - 3) +  4√2 i  ]    [  (x - 3)  -  4√2 i  ]   =

 

(x - 3)2   +  √2

 

And it's clear that we will have a polynomial with rational coefficients if  R(x)  is

 

(x - 3)2   - √2

 

So

 

      Q(x)            *         R(x)        

 

[( x - 3)2  + √2 ] *  [( x - 3)2  - √2 ]    produces

 

(x - 3)4   -  2    =

 

x^4  -  4* x* 3  + 6x* 32  -  4x * 33  + 34  -  2   =

 

x^4  -  12x^3  + 54x^2  - 108x  +  79   =  P(x)

 

 

cool cool cool

CPhill  Jan 6, 2018
edited by CPhill  Jan 6, 2018
edited by CPhill  Jan 6, 2018

7 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details