Find a polynomial of degree such that both of these properties hold:

f(x) is divisible by x^3.

f(x)+2 is divisible by (x+1)^3.

Write your answer in expanded form (that is, do not factor f(x)).

Guest Jul 22, 2021

#1**0 **

Since f(x) is divisible by x^3, f(x) is of the form ax^5 + bx^4 + cx^3.

You then want ax^5 + bx^4 + cx^3 + 2 to be divisible by (x + 1)^3. Using long division, you get the equations

-10a + 6b - 3c = 0

4a - 3b + 2c = 0

-a + b - c + 2 = 0

==> a = 6, b = 16, c = 12

So f(x) = 6x^5 + 16x^4 + 12x^3.

Guest Jul 22, 2021