+0  
 
+2
247
1
avatar+221 

Find a polynomial function whose graph passes through ​(6,13), (9,-11), (0,5)

quilly  Mar 27, 2018
 #1
avatar+92532 
+2

Assuming a quadratic, we have that

y  = ax^2 + bx + c  

Since (0,5) is on the graph, c  =5

 

And we have the remaining  system

 

a(9)^2 + b(9)  + 5  =  -11

a(6)^2  + b(6) + 5  =  13     simplify

 

81a + 9b  =  -16     multiply through by  6 ⇒  486a  + 54b  =  - 96   (1)

36a + 6b   =   8      multiply through by  -9 ⇒  -324a  -54b  =  -72     (2)

 

Add (1)  and (2)

 

162a  =  -168

a  = -28/27

 

To  find b we have

36 (-28/27) + 6b  =  8   

-112/3 + 6b  = 8 

⇒  b  =  68/9

 

The function is

 

y  =  - (28/27)x^2  + (68/9)x  + 5

 

Here's a graph  with the included points  :

 

https://www.desmos.com/calculator/z4qpjyxpic

 

 

cool cool cool

CPhill  Mar 27, 2018

34 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.