+0  
 
-1
884
4
avatar+59 

 

 

Find cos A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find sinB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find AC

 

 

 

 Jun 5, 2019
 #1
avatar+343 
+2

1) We will use Law of cosines:

\((CB)^2=(CA)^2+(BA)^2-2(CA)(BA)cosA<=>2^2=3^2+4^2-(2\times3\times4cosA)<=>-21=-24cosA<=>cosA=\frac{7}{8}\)

So \(cosA=\frac{7}{8}\) or \(cosA=0.875\)

 

 

2)We will do pythagorean theorem at ACD : \((AC)^2= (DC)^2 + (AC)^2<=> 10^2=6^2 + (AC)^2<=>(AC)^2=10^2-6^2<=>AC=\sqrt{100-36}=\sqrt{64}=8\)

So \(AC=8 \)

\(sinB=\frac{AC}{BC}=\frac{8}{15}\) or \(sinB=0.533...\)

 

 

3) We will use Law of cosines (like 1):

\((BC)^2=(AB)^2+(AC)^2-2(AB)(AC)cos150<=>174=(CA)^2+81+15.588CA<=>(CA)^2+15.588CA-66=0\)

CA=x => \(x^2+15.588x-66=0<=>x=\frac{-15.588±\sqrt{506.985744}}{2}\)

\(x1=3.4641...\) , \(x2=-19.0521...\)

x2<0 We want distance witch always > 0 

So  \( AC=x1=3.4641...\)

BUT It's more easy to solve it like CPhill solution with roots!

This is a different way to solve it.

 

Hope I help you!

 Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
 #4
avatar+59 
+2

Actually, due to Pythagoras, AD=8 & AB=17. So the answer is 8/17. (For #2)  

Aopshelp  Jun 6, 2019
 #2
avatar+129907 
+1

We can actually find an exact value for AC on the last one....we have....

 

(7√3)^2  =  9^2 + AC^2 - 2(9)(AC)cos (150)

 

147 = 81 + AC^2 - 18AC * [ -√3 / 2]

 

66 = AC^2  + 9√3 AC      let AC = x      and we have that

 

66 =x^2 + 9√3x  rearrange as

 

x^2 + 9√3x - 66 = 0

 

Using the quadratic formula

 

 

x =  -9√3   +  √  [ (9√3)^2 - 4(-66) ]             -9√3 + √[ 243 + 264]

      _________________________ =       _________________  = 

                        2                                                     2

 

 

-9√3  + √507              -9√3 +  √[169 * 3 ]                       -9√3 + 13√3

___________   =    ___________________ =              __________    =

          2                               2                                                    2

 

 

4√3

___     =      2√3    =   AC

  2

 

 

 

cool cool cool

 Jun 5, 2019
 #3
avatar+343 
+2

Yes i calculate 150 rads :p

My bad I will edit it.

Dimitristhym  Jun 5, 2019

2 Online Users

avatar
avatar