We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
51
4
avatar+42 

 

 

Find cos A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find sinB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find AC

 

 

 

 Jun 5, 2019
 #1
avatar+324 
+2

1) We will use Law of cosines:

\((CB)^2=(CA)^2+(BA)^2-2(CA)(BA)cosA<=>2^2=3^2+4^2-(2\times3\times4cosA)<=>-21=-24cosA<=>cosA=\frac{7}{8}\)

So \(cosA=\frac{7}{8}\) or \(cosA=0.875\)

 

 

2)We will do pythagorean theorem at ACD : \((AC)^2= (DC)^2 + (AC)^2<=> 10^2=6^2 + (AC)^2<=>(AC)^2=10^2-6^2<=>AC=\sqrt{100-36}=\sqrt{64}=8\)

So \(AC=8 \)

\(sinB=\frac{AC}{BC}=\frac{8}{15}\) or \(sinB=0.533...\)

 

 

3) We will use Law of cosines (like 1):

\((BC)^2=(AB)^2+(AC)^2-2(AB)(AC)cos150<=>174=(CA)^2+81+15.588CA<=>(CA)^2+15.588CA-66=0\)

CA=x => \(x^2+15.588x-66=0<=>x=\frac{-15.588±\sqrt{506.985744}}{2}\)

\(x1=3.4641...\) , \(x2=-19.0521...\)

x2<0 We want distance witch always > 0 

So  \( AC=x1=3.4641...\)

BUT It's more easy to solve it like CPhill solution with roots!

This is a different way to solve it.

 

Hope I help you!

.
 Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
edited by Dimitristhym  Jun 5, 2019
 #4
avatar+42 
+2

Actually, due to Pythagoras, AD=8 & AB=17. So the answer is 8/17. (For #2)  

Aopshelp  Jun 6, 2019
 #2
avatar+101431 
+2

We can actually find an exact value for AC on the last one....we have....

 

(7√3)^2  =  9^2 + AC^2 - 2(9)(AC)cos (150)

 

147 = 81 + AC^2 - 18AC * [ -√3 / 2]

 

66 = AC^2  + 9√3 AC      let AC = x      and we have that

 

66 =x^2 + 9√3x  rearrange as

 

x^2 + 9√3x - 66 = 0

 

Using the quadratic formula

 

 

x =  -9√3   +  √  [ (9√3)^2 - 4(-66) ]             -9√3 + √[ 243 + 264]

      _________________________ =       _________________  = 

                        2                                                     2

 

 

-9√3  + √507              -9√3 +  √[169 * 3 ]                       -9√3 + 13√3

___________   =    ___________________ =              __________    =

          2                               2                                                    2

 

 

4√3

___     =      2√3    =   AC

  2

 

 

 

cool cool cool

 Jun 5, 2019
 #3
avatar+324 
+2

Yes i calculate 150 rads :p

My bad I will edit it.

Dimitristhym  Jun 5, 2019

9 Online Users

avatar
avatar