+0  
 
0
838
2
avatar+1876 

Find all cubic roots of \(z = −1 + i \)

 Dec 22, 2015

Best Answer 

 #2
avatar+94976 
+10

Hi Gibsonj338   laugh

 

Find all cubic roots of

 

 \(z=-1+i \mbox{ distance of z to the origin }=\sqrt{1^2+1^2}=\sqrt2\\ \mbox{cubic toots so there are 3 of them so they are } \frac{2\pi}{3} radians\; apart.\\ z=\sqrt2(cis\frac{3\pi}{4})\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{4}\div3)),\quad\sqrt[6]{2}(cis((\frac{3\pi}{4}+2\pi)\div3)),\quad \sqrt[6]{2}(cis((\frac{3\pi}{4}+4\pi)\div3))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{4}\div3)),\quad\sqrt[6]{2}(cis(\frac{11\pi}{4}\div3)),\quad \sqrt[6]{2}(cis(\frac{19\pi}{4}\div3))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{12})),\quad\sqrt[6]{2}(cis(\frac{11\pi}{12})),\quad \sqrt[6]{2}(cis(\frac{19\pi}{12}))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{\pi}{4})),\quad\sqrt[6]{2}(cis(\frac{11\pi}{12})),\quad \sqrt[6]{2}(cis(\frac{19\pi}{12}))\\ or\ \)

 

\(\sqrt[3]{z}=\frac{1+i}{\sqrt[3]{2}},\quad\sqrt[6]{2}(cos(\frac{11\pi}{12})+i\;sin(\frac{11\pi}{12})),\quad\sqrt[6]{2}(cos(\frac{19\pi}{12})+i\;sin(\frac{19\pi}{12}))\\ \sqrt[3]{z}=\frac{1+i}{\sqrt[3]{2}},\quad\sqrt[6]{2}(-cos(\frac{\pi}{12})+i\;sin(\frac{\pi}{12})),\quad\sqrt[6]{2}(cos(\frac{5\pi}{12})-i\;sin(\frac{5\pi}{12})) \)

 

 Dec 23, 2015
edited by Melody  Dec 23, 2015
 #1
avatar+1876 
+5

\(z =(−1 + i )^(1/3)\)

 

\(r=\sqrt((-1)^2+1^2)\)

 

\(r=\sqrt(1+1^2)\)

 

\(r=\sqrt(1+1)\)

 

\(r=\sqrt(2)\)

 

\(tan(\Theta)=1/-1\)

 

\(tan(\Theta)=-1\)

 

\(\Theta=tan^-1(-1)\)

 

\(\Theta=-\pi/4\)

 

\(\sqrt(2)e^(-\pi/4i)^(1/3)\)

 

\(\sqrt(2)^(1/3)e^(-\pi/12i)\)

 

\(\sqrt(2)^(1/3)*(cos(-\pi/12)+isin(-\pi/12))\)

 

\(\sqrt(2)^(1/3)*(0.965925826289 +isin(-\pi/12))\)

 

\(\sqrt(2)^(1/3)*(0.965925826289 +i*-0.258819045103)\)

 

\(\ 1.414213562373095)^(1/3)*(0.965925826289 +i*-0.258819045103)\)

 

\(\ 1.122462048309373*(0.965925826289 +i*-0.258819045103)\)

 

\(\ 1.084215081491274550528506797 +i*-0.290514555507789375384650419\)

 

\(\ 1.084215081491274550528506797 + -0.290514555507789375384650419i\)

 

Answer 1:\(\ 1.084215081491274550528506797 -0.290514555507789375384650419i\)

 

\(\sqrt(2)e^(7\pi/4i)^(1/3)\)

 

\(\sqrt(2)^(1/3)e^(7\pi/12i)\)

 

\(\sqrt(2)^(1/3)*(cos(7\pi/12)+isin(7\pi/12))\)

 

\(\sqrt(2)^(1/3)*(-0.258819045103 +isin(7\pi/12))\)

 

\(\sqrt(2)^(1/3)*(-0.258819045103 +i* 0.965925826289)\)

 

\(\ 1.414213562373095)^(1/3)*(-0.258819045103 +i* 0.965925826289)\)

 

\(\ 1.122462048309373*(-0.258819045103 +i* 0.965925826289)\)

 

\(\ -0.290514555507789375384650419 +i* 1.084215081491274550528506797\)

 

Answer 2:\(\ -0.290514555507789375384650419 +1.084215081491274550528506797i\)

 

\(\sqrt(2)e^(15\pi/4i)^(1/3)\)

 

\(\sqrt(2)^(1/3)e^(15\pi/12i)\)

 

\(\sqrt(2)^(1/3)*(cos(15\pi/12)+isin(15\pi/12))\)

 

\(\sqrt(2)^(1/3)*(-0.707106781187 +isin(15\pi/12))\)

 

\(\sqrt(2)^(1/3)*(-0.707106781187 +i* -0.707106781187)\)

 

\(\ 1.414213562373095)^(1/3)*(-0.707106781187 +i* -0.707106781187)\)

 

\(\ 1.122462048309373*(-0.793700525984607637192165751 +i* -0.793700525984607637192165751)\)

 

\(\ -0.793700525984607637192165751 +i*-0.793700525984607637192165751\)

 

\(\ -0.793700525984607637192165751 +-0.793700525984607637192165751i\)

 

Answer 3:\(\ -0.793700525984607637192165751 -0.793700525984607637192165751i\)

.
 Dec 22, 2015
edited by gibsonj338  Dec 22, 2015
 #2
avatar+94976 
+10
Best Answer

Hi Gibsonj338   laugh

 

Find all cubic roots of

 

 \(z=-1+i \mbox{ distance of z to the origin }=\sqrt{1^2+1^2}=\sqrt2\\ \mbox{cubic toots so there are 3 of them so they are } \frac{2\pi}{3} radians\; apart.\\ z=\sqrt2(cis\frac{3\pi}{4})\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{4}\div3)),\quad\sqrt[6]{2}(cis((\frac{3\pi}{4}+2\pi)\div3)),\quad \sqrt[6]{2}(cis((\frac{3\pi}{4}+4\pi)\div3))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{4}\div3)),\quad\sqrt[6]{2}(cis(\frac{11\pi}{4}\div3)),\quad \sqrt[6]{2}(cis(\frac{19\pi}{4}\div3))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{3\pi}{12})),\quad\sqrt[6]{2}(cis(\frac{11\pi}{12})),\quad \sqrt[6]{2}(cis(\frac{19\pi}{12}))\\ \sqrt[3]{z}=\sqrt[6]{2}(cis(\frac{\pi}{4})),\quad\sqrt[6]{2}(cis(\frac{11\pi}{12})),\quad \sqrt[6]{2}(cis(\frac{19\pi}{12}))\\ or\ \)

 

\(\sqrt[3]{z}=\frac{1+i}{\sqrt[3]{2}},\quad\sqrt[6]{2}(cos(\frac{11\pi}{12})+i\;sin(\frac{11\pi}{12})),\quad\sqrt[6]{2}(cos(\frac{19\pi}{12})+i\;sin(\frac{19\pi}{12}))\\ \sqrt[3]{z}=\frac{1+i}{\sqrt[3]{2}},\quad\sqrt[6]{2}(-cos(\frac{\pi}{12})+i\;sin(\frac{\pi}{12})),\quad\sqrt[6]{2}(cos(\frac{5\pi}{12})-i\;sin(\frac{5\pi}{12})) \)

 

Melody Dec 23, 2015
edited by Melody  Dec 23, 2015

35 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.