We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
937
3
avatar+644 

Find all real x where
\(2\cdot\frac{x-5}{x-3} > \frac{2x-5}{x+2} + 5.\)
Give your answer in interval notation.

 Mar 9, 2018
 #1
avatar+22569 
+2

Find all real x where

\(\displaystyle 2\cdot \left(\frac{x-5}{x-3}\right) > \frac{2x-5}{x+2} + 5.\)
2\cdot\frac{x-5}{x-3} > \frac{2x-5}{x+2} + 5.

 

1. rearrange:

\(\begin{array}{|rcll|} \hline 2\cdot \left( \dfrac{x-5}{x-3} \right) &>& \dfrac{2x-5}{x+2} + 5 \\\\ \dfrac{2x-10}{x-3} &>& \dfrac{2x-5+5(x+2)}{x+2} \\\\ \dfrac{2x-10}{x-3} &>& \dfrac{2x-5+5x+10}{x+2} \\\\ \mathbf{ \dfrac{2x-10}{x-3} } & \mathbf{>} & \mathbf{\dfrac{7x+5}{x+2}} \\ \hline \end{array}\)

 

2.  reduce / convert fractions to a common :

\(\begin{array}{|rcll|} \hline \dfrac{2x-10}{x-3} - \dfrac{7x+5}{x+2} & > & 0 \\\\ \dfrac{(2x-10)(x+2)-(7x+5)(x-3)}{(x-3)(x+2)} & > & 0 \\\\ \dfrac{2x^2+4x-10x-20-7x^2+21x-5x+15}{(x-3)(x+2)} & > & 0 \\\\ \dfrac{-5x^2+10x-5}{(x-3)(x+2)} & > & 0 \\\\ \dfrac{-5(x^2-2x+1)}{(x-3)(x+2)} & > & 0 \quad | \quad : (-5) \\ && \text{ attention } ">" \rightarrow "<" \\\\ \dfrac{x^2-2x+1}{(x-3)(x+2)} & < & 0 \quad | \quad x^2-2x+1 = (x-1)^2 \\\\ \dfrac{(x-1)^2 }{(x-3)(x+2)} & < & 0 \quad | \quad \cdot (x-3)^2(x+2)^2 \\\\ \dfrac{(x-1)^2(x-3)^2(x+2)^2 }{(x-3)(x+2)} & < & 0 \\\\ \mathbf{(x-1)^2(x-3)(x+2)} & \mathbf{\color{red}<} & \mathbf{ 0 } \\ \hline \end{array}\)

 

3. solve the equation:

\(\begin{array}{|l|c|c|c|c|c|c|c|} \hline \text{sign} & (-\infty,-2 ) & -2 & (-2,1) & 1 & (1,3) & 3 & (3,\infty) \\ \hline x-3 & - & - & - & - & - & 0 & + \\ \hline (x-1)^2 & + & + & + & 0 & + & + & + \\ \hline x+2 & - & 0 & + & + & + & + & + \\ \hline \\ \hline \text{sign of } (x-1)^2(x-3)(x+2) & + & 0 & \color{red}- & 0 & \color{red}- & 0 & + \\ \hline \end{array}\)

 

interval notation: \(\mathbf{(-2,1) \text{ and } (1,3)}\)

 

laugh

 Mar 9, 2018
 #2
avatar+644 
0

im not sure thats correct

 Mar 10, 2018
 #3
avatar+28074 
+3

Heureka's result looks right to me:

 

.

Alan  Mar 10, 2018

21 Online Users

avatar
avatar
avatar