Find all real x where
2⋅x−5x−3>2x−5x+2+5.
Give your answer in interval notation.
Find all real x where
2⋅(x−5x−3)>2x−5x+2+5.
2\cdot\frac{x-5}{x-3} > \frac{2x-5}{x+2} + 5.
1. rearrange:
2⋅(x−5x−3)>2x−5x+2+52x−10x−3>2x−5+5(x+2)x+22x−10x−3>2x−5+5x+10x+22x−10x−3>7x+5x+2
2. reduce / convert fractions to a common :
2x−10x−3−7x+5x+2>0(2x−10)(x+2)−(7x+5)(x−3)(x−3)(x+2)>02x2+4x−10x−20−7x2+21x−5x+15(x−3)(x+2)>0−5x2+10x−5(x−3)(x+2)>0−5(x2−2x+1)(x−3)(x+2)>0|:(−5) attention ">"→"<"x2−2x+1(x−3)(x+2)<0|x2−2x+1=(x−1)2(x−1)2(x−3)(x+2)<0|⋅(x−3)2(x+2)2(x−1)2(x−3)2(x+2)2(x−3)(x+2)<0(x−1)2(x−3)(x+2)<0
3. solve the equation:
sign(−∞,−2)−2(−2,1)1(1,3)3(3,∞)x−3−−−−−0+(x−1)2+++0+++x+2−0+++++sign of (x−1)2(x−3)(x+2)+0−0−0+
interval notation: (−2,1) and (1,3)