Processing math: 100%
 
+0  
 
0
2348
6
avatar+239 

Find an integer  x such that 0x<527 and x373(mod527).

 May 28, 2018

Best Answer 

 #4
avatar+26396 
+2

Find an integer 

x

such that

0x<527 and x373(mod527).

0 \leq x < 527\ \text{and} \ x^{37} \equiv 3 \pmod{527}.

 

x373(mod527)orx37=3+n527|527=1731x37=3+n1731(mod17):x373(mod17)(1)(mod31):x373(mod31)(2)

 

By Fermat's Little Theorem ap11(modp) :

a=xp=17:x1711(mod17)x161(mod17)a=xp=31:x3111(mod31)x301(mod31)

 

reduce x37 to x5 and x7 :

x37(mod17)x16=1x16=1x5(mod17)|x161(mod17)x37(mod17)x5(mod17)3(mod17)| see (1) x53(mod17)(3)x37(mod31)x30=1x7(mod31)|x301(mod31)x37(mod31)x7(mod31)3(mod31)| see (2) x73(mod31)(4)

 

reduce x5 to x :

x161(mod17)|xx16xx(mod17)x17x(mod17)|if 17(mod16)1orx53(mod17)|raise to the power s x5sx(mod17)if5s1(mod16)solve s:s51(mod16)s5ϕ(16)1(mod16)|5 and 16 are co-prime!s581(mod16)|ϕ(16)=8s57(mod16)s13(mod16)xx5s(mod17)x513(mod17)(x5)13(mod17)|x53(mod17)313(mod17)x12(mod17)

 

reduce x7 to x :

x301(mod31)|xx30xx(mod31)x31x(mod31)|if 31(mod30)1orx73(mod31)|raise to the power s x7sx(mod31)if7s1(mod30)solve s:s71(mod30)s7ϕ(30)1(mod30)|7 and 30 are co-prime!s781(mod30)|ϕ(30)=8s77(mod30)s13(mod30)xx7s(mod31)x713(mod31)(x7)13(mod31)|x73(mod31)313(mod31)x24(mod17)


finally solve the system for x:

(1)x12(mod17)(2)x24(mod31)17 and 31 are co-prime!x=1231311(mod17)311(mod17)171(mod31)+2417171(mod31)31ϕ(17)1(mod17)17ϕ(31)1(mod31)+1731nnZ31161(mod17)17301(mod31)3115(mod17)1729(mod31)1415(mod17)(172)1417(mod31)(142)714(mod17)101417(mod31)9714(mod17)(102)717(mod31)11(mod17)7717(mod31)11(mod31)x=123111+241711+1731nx=4092+4488+527nx=8580=148(mod527)+527nx=148+527n0x<527n=0!x=148

 

 

laugh

 May 29, 2018
edited by heureka  May 29, 2018
 #1
avatar+118696 
0

I'd really like to see someone tackle this question.  :/

 May 28, 2018
 #2
avatar
0

x^37 mod 527 = 3, solve for x

Using simple iteration:

x =148. So that:

x =527n + 148, where n =0, 1, 2, 3.....etc.

 May 28, 2018
 #3
avatar+118696 
0

That is simple for a computer but I do not think it is how the question was intended to be done.

Melody  May 28, 2018
edited by Melody  May 28, 2018
 #4
avatar+26396 
+2
Best Answer

Find an integer 

x

such that

0x<527 and x373(mod527).

0 \leq x < 527\ \text{and} \ x^{37} \equiv 3 \pmod{527}.

 

x373(mod527)orx37=3+n527|527=1731x37=3+n1731(mod17):x373(mod17)(1)(mod31):x373(mod31)(2)

 

By Fermat's Little Theorem ap11(modp) :

a=xp=17:x1711(mod17)x161(mod17)a=xp=31:x3111(mod31)x301(mod31)

 

reduce x37 to x5 and x7 :

x37(mod17)x16=1x16=1x5(mod17)|x161(mod17)x37(mod17)x5(mod17)3(mod17)| see (1) x53(mod17)(3)x37(mod31)x30=1x7(mod31)|x301(mod31)x37(mod31)x7(mod31)3(mod31)| see (2) x73(mod31)(4)

 

reduce x5 to x :

x161(mod17)|xx16xx(mod17)x17x(mod17)|if 17(mod16)1orx53(mod17)|raise to the power s x5sx(mod17)if5s1(mod16)solve s:s51(mod16)s5ϕ(16)1(mod16)|5 and 16 are co-prime!s581(mod16)|ϕ(16)=8s57(mod16)s13(mod16)xx5s(mod17)x513(mod17)(x5)13(mod17)|x53(mod17)313(mod17)x12(mod17)

 

reduce x7 to x :

x301(mod31)|xx30xx(mod31)x31x(mod31)|if 31(mod30)1orx73(mod31)|raise to the power s x7sx(mod31)if7s1(mod30)solve s:s71(mod30)s7ϕ(30)1(mod30)|7 and 30 are co-prime!s781(mod30)|ϕ(30)=8s77(mod30)s13(mod30)xx7s(mod31)x713(mod31)(x7)13(mod31)|x73(mod31)313(mod31)x24(mod17)


finally solve the system for x:

(1)x12(mod17)(2)x24(mod31)17 and 31 are co-prime!x=1231311(mod17)311(mod17)171(mod31)+2417171(mod31)31ϕ(17)1(mod17)17ϕ(31)1(mod31)+1731nnZ31161(mod17)17301(mod31)3115(mod17)1729(mod31)1415(mod17)(172)1417(mod31)(142)714(mod17)101417(mod31)9714(mod17)(102)717(mod31)11(mod17)7717(mod31)11(mod31)x=123111+241711+1731nx=4092+4488+527nx=8580=148(mod527)+527nx=148+527n0x<527n=0!x=148

 

 

laugh

heureka May 29, 2018
edited by heureka  May 29, 2018
 #5
avatar+118696 
+2

Thanks Heureka, that is great    laugh

Melody  May 29, 2018
 #6
avatar+26396 
+2

Thank you, Melody!

 

laugh

heureka  May 29, 2018

3 Online Users

avatar