There are several approaches, but here's mine
Let's find AD using the Law of Sines
AD / sin ABD = AB / sin BDA
AD / sin(70) = 75 / sin (90)
AD = 75 sin (70)
So....DC = 90 - 75sin (70)
Similarly.... we can find BC as 75 sin (20)
So......using the tangent
Tan ( C ) = BC / DC
Tan (C) = [ (75) sin (20) / ( 90 - 75sin (70) ) ]
Using the arctangent
arctan [ 75 sin (20) / ( 90 - 75sin (70) ) ] = C ≈ .92 rads ≈ 52.7°
find angle c with trig
\(\begin{array}{|rcll|} \hline \tan(B) &=& \dfrac{c \cdot \sin(A)}{b-c\cdot \cos(A)} \quad & | \quad c = 75\ cm \quad b = 90\ cm \quad A = 20^{\circ} \\\\ \tan(B) &=& \dfrac{75 \cdot \sin(20^{\circ})}{90-75\cdot \cos(20^{\circ})} \\\\ \tan(B) &=& \dfrac{75 \cdot 0.34202014333}{90-75\cdot 0.93969262079} \\\\ \tan(B) &=& 1.31390875033 \\\\ B &=& \arctan(1.31390875033) \\\\ \mathbf{B} & \mathbf{=} & \mathbf{52.7256774464^{\circ}} \\ \hline \end{array}\)