+0  
 
-1
43
3
avatar

y=tan(pi-(10/x)) 

My answer is (-10/x^2) *sec ^2(pi-(10/x))  but my other answer is  (10/x^2) *sec ^2(10/x) .  Not sure why the PI is not in the second answer ( the correct one) 

Guest May 3, 2018
Sort: 

2+0 Answers

 #2
avatar
+1

Find the derivative of the following via implicit differentiation:
d/dx(y) = d/dx(-tan(10/x))

The derivative of y is y'(x):
y'(x) = d/dx(-tan(10/x))

Factor out constants:
y'(x) = -d/dx(tan(10/x))

Using the chain rule, d/dx(tan(10/x)) = ( dtan(u))/( du) ( du)/( dx), where u = 10/x and d/( du)(tan(u)) = sec^2(u):
y'(x) = -d/dx(10/x) sec(10/x)^2

Factor out constants:
y'(x) = -sec^2(10/x) 10 d/dx(1/x)

Use the power rule, d/dx(x^n) = n x^(n - 1), where n = -1.
d/dx(1/x) = d/dx(x^(-1)) = -x^(-2):
 
y'(x) = -10 sec^2(10/x) (-1)/(x^2) [Courtesy of Mathematica 11 Home Edition]

Guest May 3, 2018
 #3
avatar+92441 
+1

y=tan(pi-(10/x)) 

My answer is (-10/x^2) *sec ^2(pi-(10/x))  but my other answer is  (10/x^2) *sec ^2(10/x) .  Not sure why the PI is not in the second answer ( the correct one) 

 

\(y=tan(\pi-(10/x)) \\ y=tan(\frac{-10}{x}) \\\qquad\qquad x\ne0\\ \qquad\qquad \frac{-10}{x}\ne \frac{\pi}{2}\pm n\pi\\ \qquad\qquad\frac{-10}{x}\ne \frac{\pi\pm 2n\pi}{2}\\ \qquad\qquad\frac{x}{-10}\ne \frac{2}{\pi\pm 2n\pi}\\ \)

\(\qquad\qquad x\ne \frac{-20}{\pi\pm 2n\pi}\qquad x\ne 0 \qquad n\in Z\\\)

---------

 

\(y=tan(\frac{-10}{x}) \\ y=tan(-10x^{-1})\\ \frac{dy}{dx}=--10x^{-2}*sec^2(10x^{-1})\\ \frac{dy}{dx}=\frac{10}{x^2}*sec^2\frac{10}{x}\)

 

\(where \quad x\ne \frac{20}{\pi\pm 2n\pi}\qquad x\ne 0 \qquad n\in Z\)

----

Melody  May 3, 2018
edited by Melody  May 3, 2018

21 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy