+0  
 
0
310
1
avatar

 find an equation of the liner through (-78,-56) paralled with the line given by -8+52x+97y=0

Guest Jul 14, 2017

Best Answer 

 #1
avatar+7324 
+1

Parallel lines have the same slope. We can find the slope of our line by finding the slope of the line

 

-8 + 52x + 97y  =  0           . Let's get this into slope intercept form. Subtract  97y  from both sides.

 

-8 + 52x  =  -97y                Divide through by  -97  .

 

\(\frac{8}{97}-\frac{52}{97}x=y \)                  Rearrange.

 

\(y=-\frac{52}{97}x+\frac8{97}\)               When the equation is in this form, we can see that the slope is  -\(\frac{52}{97}\)  .

 

So, the equation of the line with a slope of  -\(\frac{52}{97}\)  that passes through  (-78, -56)  is.....

 

y - -56  =   -\(\frac{52}{97}\)( x - -78 )

 

y + 56  =   -\(\frac{52}{97}\)( x + 78 )           This is in  " point-slope "  form. We can get it in slope-intercept form.

 

y + 56  =   -\(\frac{52}{97}\)x  -  \(\frac{4056}{97}\)          Subtract  56  from both sides of this equation.

 

y  =   -\(\frac{52}{97}\)x  -  \(\frac{9488}{97}\)

 

Here's the graph I used to check this answer:  https://www.desmos.com/calculator/ssvwvuf0cb

hectictar  Jul 15, 2017
 #1
avatar+7324 
+1
Best Answer

Parallel lines have the same slope. We can find the slope of our line by finding the slope of the line

 

-8 + 52x + 97y  =  0           . Let's get this into slope intercept form. Subtract  97y  from both sides.

 

-8 + 52x  =  -97y                Divide through by  -97  .

 

\(\frac{8}{97}-\frac{52}{97}x=y \)                  Rearrange.

 

\(y=-\frac{52}{97}x+\frac8{97}\)               When the equation is in this form, we can see that the slope is  -\(\frac{52}{97}\)  .

 

So, the equation of the line with a slope of  -\(\frac{52}{97}\)  that passes through  (-78, -56)  is.....

 

y - -56  =   -\(\frac{52}{97}\)( x - -78 )

 

y + 56  =   -\(\frac{52}{97}\)( x + 78 )           This is in  " point-slope "  form. We can get it in slope-intercept form.

 

y + 56  =   -\(\frac{52}{97}\)x  -  \(\frac{4056}{97}\)          Subtract  56  from both sides of this equation.

 

y  =   -\(\frac{52}{97}\)x  -  \(\frac{9488}{97}\)

 

Here's the graph I used to check this answer:  https://www.desmos.com/calculator/ssvwvuf0cb

hectictar  Jul 15, 2017

29 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.