+0  
 
0
1137
2
avatar

Find i^1+i^2+i^3+...+ i^97 + i^98+i^99.

 Sep 2, 2020
 #1
avatar+85 
0

The answer is -1.

 

let's first start with small numbers, i^1 + i^2 + i^3 + i^4. Assuming in your case i is the imaginary number, I'll start by calculating that. i^1 is just i. i^2 is -1, i^3 is -1(i) which is -i, and i^4 is -i(i) which is -i^2 which is -1(-1) which becomes 1. Continiuing to calculate these, you'll find that there's a pattern.

 

i^1 = i                   i^5 = i

i^2 = -1                 i^6 = -1

i^3 = -i                  i^7 = -i

i^4 = 1                  i^8 = 1

 

The powers of i repeat in groups of 4. 

 

Now that we've found out the pattern, we'll calculate yours. 99/4 leaves a remainder of 3. So then we have i^97 = i, i^98 = -1, and i^99 = -1. The i and -i cancel out, so you're left with the answer -1.

 Sep 2, 2020
 #2
avatar+26396 
+3

Find i^1+i^2+i^3+...+ i^97 + i^98+i^99.


s=i1+i2+i3++i97+i98+i99is=i2+i3++i97+i98+i99+i100sis=i1i100s(1i)=ii100s=ii1001is=ii2501is=i(i2)501i|i2=1s=i(1)501is=i11is=(1i)(1i)s=1i1+i2+i3++i97+i98+i99=1

laugh

 Sep 4, 2020

1 Online Users