+0  
 
0
670
1
avatar

Find r in a GS if the first term is 2/3 and the 7th term is 128/2187?

 Jun 17, 2015

Best Answer 

 #1
avatar+33657 
+10

The n'th term in a geometric series is a*r(n-1) where a is the first term; so:

 

$$\frac{2}{3}r^6=\frac{128}{2187}$$

 

or

$$r=(\frac{3*128}{2*2187})^\frac{1}{6}=(\frac{64}{729})^\frac{1}{6}=\frac{2}{3}$$

.

 Jun 17, 2015
 #1
avatar+33657 
+10
Best Answer

The n'th term in a geometric series is a*r(n-1) where a is the first term; so:

 

$$\frac{2}{3}r^6=\frac{128}{2187}$$

 

or

$$r=(\frac{3*128}{2*2187})^\frac{1}{6}=(\frac{64}{729})^\frac{1}{6}=\frac{2}{3}$$

.

Alan Jun 17, 2015

3 Online Users