14868=14250(1+r/12)^36 r=?
\(\begin{array}{rcl} 14868 &=& 14250\cdot (1+ \frac{r}{12} )^{36} \\ 14250\cdot(1+ \frac{r}{12} )^{36} &=&14868 \\ (1+ \frac{r}{12} )^{36} &=& \frac{ 14868 }{ 14250 } \qquad | \qquad \sqrt[36]{}\\ 1+ \frac{r}{12} &=&\sqrt[36]{\frac{ 14868 }{ 14250 } }\\ \frac{r}{12} &=&\sqrt[36]{\frac{ 14868 }{ 14250 } }-1 \\ r &=& 12 \cdot \left( \sqrt[36]{\frac{ 14868 }{ 14250 } }-1 \right) \\ r &=& 12 \cdot \left( \sqrt[36]{ 1.04336842105 }-1 \right) \\ r &=& 12 \cdot \left( 1.00117998301-1 \right) \\ r &=& 12 \cdot 0.00117998301 \\ \mathbf{r} &\mathbf{=}& \mathbf{0.01415979617} \end{array}\)
14868=14250(1+r/12)^36 r=?
\(\begin{array}{rcl} 14868 &=& 14250\cdot (1+ \frac{r}{12} )^{36} \\ 14250\cdot(1+ \frac{r}{12} )^{36} &=&14868 \\ (1+ \frac{r}{12} )^{36} &=& \frac{ 14868 }{ 14250 } \qquad | \qquad \sqrt[36]{}\\ 1+ \frac{r}{12} &=&\sqrt[36]{\frac{ 14868 }{ 14250 } }\\ \frac{r}{12} &=&\sqrt[36]{\frac{ 14868 }{ 14250 } }-1 \\ r &=& 12 \cdot \left( \sqrt[36]{\frac{ 14868 }{ 14250 } }-1 \right) \\ r &=& 12 \cdot \left( \sqrt[36]{ 1.04336842105 }-1 \right) \\ r &=& 12 \cdot \left( 1.00117998301-1 \right) \\ r &=& 12 \cdot 0.00117998301 \\ \mathbf{r} &\mathbf{=}& \mathbf{0.01415979617} \end{array}\)