+0  
 
0
389
3
avatar

Find sin2x, cos2x,and tan2x in the given information. csc x=9, tan x <0

Guest Apr 5, 2017
Sort: 

3+0 Answers

 #1
avatar+7056 
+3

csc x = 9

 

sin x = \(\frac{1}{9}\)

 

*edit* If the tangent is negative, and the sin is positive, then the cosine must be negative.

cos x = \( -\sqrt{1-(\frac{1}{9})^2}=-\frac{4\sqrt5}{9}\)

 

tan x = \( \frac{\sin x}{\cos x}=\frac{1}{9} \div -\frac{4\sqrt5}{9} = -\frac{\sqrt5}{20} \)

 

So..using the double-angle formulas:

 

sin (2x) = 2 sin x cos x = \(2\cdot\frac{1}{9}\cdot-\frac{4\sqrt5}{9} \mathbf{=-\frac{8\sqrt5}{81}} \)

 

cos (2x) = 1 - 2 sin2 x = \( 1-2\cdot(\frac{1}{9})^2\mathbf{=\frac{79}{81}} \)

 

tan (2x) = \( \frac{2\tan x}{1-\tan^2 x}=\frac{2\cdot{ \frac{-\sqrt5}{20}}}{1- (-\frac{\sqrt5}{20})^2}=\frac{-\frac{\sqrt5}{10}}{\frac{395}{400}}\mathbf{=-\frac{8\sqrt5}{79}}\)

hectictar  Apr 5, 2017
edited by hectictar  Apr 5, 2017
 #2
avatar+7056 
+2

Actually the tangent one is wrong.. I did it if tan x > 0 blush

 

....Okay I think I fixed it now

hectictar  Apr 5, 2017
edited by hectictar  Apr 5, 2017
 #3
avatar+86649 
+1

 

Yeah....you did fix it, hectictar.......check your answer for tan(2x)  by  comparing it with

sin(2x) / cos(2x)  .......

 

 

cool cool cool

CPhill  Apr 5, 2017
edited by CPhill  Apr 5, 2017

9 Online Users

avatar

New Privacy Policy (May 2018)

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see cookie policy and privacy policy.