+0  
 
0
655
1
avatar

Find the equation in gradient - y intercept form for the following straight line with the coordinates (-4,4) and (16,1) ?

 Apr 14, 2015

Best Answer 

 #2
avatar
+5

Gradient, m =$${\frac{{\mathtt{dy}}}{{\mathtt{dx}}}}$$   therefore $${\frac{\left({\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{\left({\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{16}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{20}}}} = -{\mathtt{0.15}}$$

 

Equation of a line $${\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{y1}} = {m}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{x1}}\right)}$$ Thus, (you can use any point on the line to sub in here)

 

$${\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{\,-\,}}\left({\mathtt{0.15}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{16}}\right)\right)$$

 

Then you can re arrange to get in any format

 Apr 14, 2015
 #2
avatar
+5
Best Answer

Gradient, m =$${\frac{{\mathtt{dy}}}{{\mathtt{dx}}}}$$   therefore $${\frac{\left({\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{\left({\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,-\,}}{\mathtt{16}}\right)}} = {\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{20}}}} = -{\mathtt{0.15}}$$

 

Equation of a line $${\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{y1}} = {m}{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{x1}}\right)}$$ Thus, (you can use any point on the line to sub in here)

 

$${\mathtt{y}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{\,-\,}}\left({\mathtt{0.15}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{16}}\right)\right)$$

 

Then you can re arrange to get in any format

Guest Apr 14, 2015

0 Online Users