Find the exact value of sin(2y) given sin(y)=-8/17 and 270<y<360
4th quad so cos y is positive.
\(sin2y=2sinycosy\)
If opp is 8 and hyp is 17 then adjacent must be
\(adj^2=17^2-8^2=289-64=225\\ adj = 15 \)
\(sin2y=2sinycosy\\ sin2y=2*\frac{-8}{17}*\frac{15}{17}\\ sin2y=2*\frac{-120}{289}\\ sin2y=\frac{-240}{289}\\\)
Find the exact value of sin(2y) given sin(y)=-8/17 and 270<y<360
4th quad so cos y is positive.
\(sin2y=2sinycosy\)
If opp is 8 and hyp is 17 then adjacent must be
\(adj^2=17^2-8^2=289-64=225\\ adj = 15 \)
\(sin2y=2sinycosy\\ sin2y=2*\frac{-8}{17}*\frac{15}{17}\\ sin2y=2*\frac{-120}{289}\\ sin2y=\frac{-240}{289}\\\)