+0  
 
0
1357
3
avatar

Find the exact value of sin(2y) given sin(y)=-8/17 and 270<y<360

 Mar 29, 2016

Best Answer 

 #1
avatar+118723 
+10

Find the exact value of sin(2y) given sin(y)=-8/17 and 270<y<360

 

4th quad so cos y is positive.

 

\(sin2y=2sinycosy\)

 

If opp is 8 and hyp is 17 then adjacent must be   

\(adj^2=17^2-8^2=289-64=225\\ adj = 15 \)

 

\(sin2y=2sinycosy\\ sin2y=2*\frac{-8}{17}*\frac{15}{17}\\ sin2y=2*\frac{-120}{289}\\ sin2y=\frac{-240}{289}\\\)

 Mar 29, 2016
 #1
avatar+118723 
+10
Best Answer

Find the exact value of sin(2y) given sin(y)=-8/17 and 270<y<360

 

4th quad so cos y is positive.

 

\(sin2y=2sinycosy\)

 

If opp is 8 and hyp is 17 then adjacent must be   

\(adj^2=17^2-8^2=289-64=225\\ adj = 15 \)

 

\(sin2y=2sinycosy\\ sin2y=2*\frac{-8}{17}*\frac{15}{17}\\ sin2y=2*\frac{-120}{289}\\ sin2y=\frac{-240}{289}\\\)

Melody Mar 29, 2016
 #2
avatar+130511 
0

Nice use of that identity, Melody.....!!!

 

 

cool cool cool

 Mar 29, 2016
 #3
avatar+118723 
+5

Thanks Chris     laugh

 

A note to guest asker:

To get the 15 I would normally draw up a little right anglesd triangle - it is easier to see visually.  :)

 Mar 29, 2016

1 Online Users

avatar