Find the exact values of tan (cos^-1(2/3)) and cos (sin^-1(-3/5)).
tan (cos^-1(2/3))
$$\small{\text{$ \boxed{\tan{ \left(~ \arccos{(x)} ~\right) }=\pm\dfrac {\sqrt{1-x^2}} {x}
=\pm\dfrac {\sqrt{1-\left(\dfrac{2}{3}\right)^2}} { \dfrac{2}{3} } =\pm \dfrac{3}{2} \cdot \sqrt{ 1-\dfrac{4}{9} }
=\pm \dfrac{3}{2} \cdot \dfrac{ \sqrt{5}}{3}
=\pm \dfrac{ \sqrt{5} }{2}
}
$}}$$
cos (sin^-1(-3/5))
$$\small{\text{$ \boxed{\cos{ \left(~ \arcsin{(x)} ~\right) }=\pm\sqrt{1-x^2}=\pm \sqrt{1+ \left( \dfrac{-3}{5} \right)^2}=\pm \dfrac{\sqrt{34} }{ 5 } }$}}$$
Think of a right-angled triangle. If the cosine of an angle is 2/3, the side adjacent to the angle is proportional to 2 and the hypotenuse is proportional to 3, so the opposite side is proportional to √(32 - 22) = √5.
Since tan of the angle is opposite/adjacent then tan(cos-1(2/3)) = (√5)/2
See if you can do something similar with the other one (remembering that in the fourth quadrant sin is negative but cos is positive).
.
Find the exact values of tan (cos^-1(2/3)) and cos (sin^-1(-3/5)).
tan (cos^-1(2/3))
$$\small{\text{$ \boxed{\tan{ \left(~ \arccos{(x)} ~\right) }=\pm\dfrac {\sqrt{1-x^2}} {x}
=\pm\dfrac {\sqrt{1-\left(\dfrac{2}{3}\right)^2}} { \dfrac{2}{3} } =\pm \dfrac{3}{2} \cdot \sqrt{ 1-\dfrac{4}{9} }
=\pm \dfrac{3}{2} \cdot \dfrac{ \sqrt{5}}{3}
=\pm \dfrac{ \sqrt{5} }{2}
}
$}}$$
cos (sin^-1(-3/5))
$$\small{\text{$ \boxed{\cos{ \left(~ \arcsin{(x)} ~\right) }=\pm\sqrt{1-x^2}=\pm \sqrt{1+ \left( \dfrac{-3}{5} \right)^2}=\pm \dfrac{\sqrt{34} }{ 5 } }$}}$$