+0  
 
0
381
2
avatar

27=u1r^3/192=u1r^6

 Jun 22, 2017

Best Answer 

 #1
avatar+99352 
+2

27=u1r^3/192=u1r^6

 

\(27=\frac{u_1r^3}{192}=u_1r^6\\ \frac{r^3}{192}=r^6\\ \frac{1}{192}=r^3\\ r=\frac{1}{\sqrt[3]{192}}\\ r=\frac{1}{4\sqrt[3]{3}}\\ 27=u_1 r^6\\ 27=\frac{u_1}{ 192^2}\\ u_1=27*192^2\\ u_1=995328\)

 

\(T_n=\dfrac{995328}{(\sqrt[3]{192})^{n-1}}\\~\\ \boxed{T_n=\dfrac{995328}{192^{((n-1)/3)}}}\\~\\ check\\ \frac{u_1r^3}{192}=\frac{995328*(192^{-1/3})^3}{192}=\frac{995328}{192^2}=27\\ u_1r^6=995328*((192)^{-1/3})^6\\ u_1r^6=995328*(192)^{-2}\\ u_1r^6=27\\ excellent \)

.
 Jun 22, 2017
 #1
avatar+99352 
+2
Best Answer

27=u1r^3/192=u1r^6

 

\(27=\frac{u_1r^3}{192}=u_1r^6\\ \frac{r^3}{192}=r^6\\ \frac{1}{192}=r^3\\ r=\frac{1}{\sqrt[3]{192}}\\ r=\frac{1}{4\sqrt[3]{3}}\\ 27=u_1 r^6\\ 27=\frac{u_1}{ 192^2}\\ u_1=27*192^2\\ u_1=995328\)

 

\(T_n=\dfrac{995328}{(\sqrt[3]{192})^{n-1}}\\~\\ \boxed{T_n=\dfrac{995328}{192^{((n-1)/3)}}}\\~\\ check\\ \frac{u_1r^3}{192}=\frac{995328*(192^{-1/3})^3}{192}=\frac{995328}{192^2}=27\\ u_1r^6=995328*((192)^{-1/3})^6\\ u_1r^6=995328*(192)^{-2}\\ u_1r^6=27\\ excellent \)

Melody Jun 22, 2017
 #2
avatar+98173 
0

 

Very nice, Melody.....!!!!

 

cool cool cool

 Jun 22, 2017

37 Online Users

avatar
avatar
avatar