+0  
 
0
593
1
avatar

 1 0 0

-1 1 0

 1 1 1

 Oct 22, 2015

Best Answer 

 #1
avatar+6251 
+10

use the Gaussian elimination method

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ -1 &1 &0 &| &0 &1 &0 \\1 &1 &1 &| &0 &0 &1\end{pmatrix} \Rightarrow\)

 

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ 0 &1 &0 &| &1 &1 &0 \\ 0 &1 &1 &| &-1 &0 &1\end{pmatrix} \Rightarrow\)

 

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ 0 &1 &0 &| &1 &1 &0 \\0 &0 &1 &| &-2 &-1 &1 \end{pmatrix} \Rightarrow\)

 

and we read off the inverse as

 

\(\begin{pmatrix}1 &0 &0 \\ 1 &1 &0 \\ -2 &-1 &1\end{pmatrix} \)

 Oct 22, 2015
 #1
avatar+6251 
+10
Best Answer

use the Gaussian elimination method

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ -1 &1 &0 &| &0 &1 &0 \\1 &1 &1 &| &0 &0 &1\end{pmatrix} \Rightarrow\)

 

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ 0 &1 &0 &| &1 &1 &0 \\ 0 &1 &1 &| &-1 &0 &1\end{pmatrix} \Rightarrow\)

 

\(\begin{pmatrix}1 &0 &0 &| &1 &0 &0 \\ 0 &1 &0 &| &1 &1 &0 \\0 &0 &1 &| &-2 &-1 &1 \end{pmatrix} \Rightarrow\)

 

and we read off the inverse as

 

\(\begin{pmatrix}1 &0 &0 \\ 1 &1 &0 \\ -2 &-1 &1\end{pmatrix} \)

Rom Oct 22, 2015

0 Online Users