+0  
 
0
700
1
avatar

Find the monthly payment: $6000, 9 1 2 %, 4 years

 Jun 27, 2014

Best Answer 

 #1
avatar+118724 
+5

I am assuming this is the question

$6000 borrowed and paid back monthly over 4 years.

The interest rate is 9.5% per annum compounded monthly.

Find monthly repayment. 

This is a present value of an ordinary annuity problem.

A=6000

n=4*12=48

i=0.095/12 = 0.007916666666...

$$\begin{array}{rll}
A&=&R\times \frac{1-(1+i)^{-n}}{i}\\\\
6000&=&R\times \frac{1-(1.007916666666)^{-48}}{0.007916666666}\\\\
6000\div \left(\frac{1-(1.007916666666)^{-48}}{0.007916666666}\right)&=&R \\\\




\end{array}$$

 

$${\frac{{\mathtt{6\,000}}}{\left({\frac{\left({\mathtt{1}}{\mathtt{\,-\,}}{\left({\mathtt{1.007\: \!916\: \!666\: \!666\: \!666\: \!6}}\right)}^{-{\mathtt{48}}}\right)}{{\mathtt{0.007\: \!916\: \!666\: \!666\: \!66}}}}\right)}} = {\mathtt{150.738\: \!820\: \!025\: \!488\: \!329\: \!5}}$$

 

So, unless I made a stupid mistake the repayments will be $150.74 per month.

 Jun 28, 2014
 #1
avatar+118724 
+5
Best Answer

I am assuming this is the question

$6000 borrowed and paid back monthly over 4 years.

The interest rate is 9.5% per annum compounded monthly.

Find monthly repayment. 

This is a present value of an ordinary annuity problem.

A=6000

n=4*12=48

i=0.095/12 = 0.007916666666...

$$\begin{array}{rll}
A&=&R\times \frac{1-(1+i)^{-n}}{i}\\\\
6000&=&R\times \frac{1-(1.007916666666)^{-48}}{0.007916666666}\\\\
6000\div \left(\frac{1-(1.007916666666)^{-48}}{0.007916666666}\right)&=&R \\\\




\end{array}$$

 

$${\frac{{\mathtt{6\,000}}}{\left({\frac{\left({\mathtt{1}}{\mathtt{\,-\,}}{\left({\mathtt{1.007\: \!916\: \!666\: \!666\: \!666\: \!6}}\right)}^{-{\mathtt{48}}}\right)}{{\mathtt{0.007\: \!916\: \!666\: \!666\: \!66}}}}\right)}} = {\mathtt{150.738\: \!820\: \!025\: \!488\: \!329\: \!5}}$$

 

So, unless I made a stupid mistake the repayments will be $150.74 per month.

Melody Jun 28, 2014

4 Online Users

avatar