We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
236
2
avatar

Find the number of ordered pairs (a,b) of real numbers such that

 \(a\) is a root of \(x^2+ax+b\)

 \(b\) is a root of \(x^2+ax+b\)

 Nov 30, 2018
 #1
avatar+5797 
+1

deleted.

.
 Nov 30, 2018
edited by Rom  Nov 30, 2018
edited by Rom  Nov 30, 2018
 #2
avatar+103148 
+1

If a is a root, then

 

a^2 + a(a) + b = 0

2a^2 + b = 0

b = -2a^2    (1)

 

If b is a root, then

b^2 + ab + b = 0    (2)

 

Sub (1) into (2)

 

(-2a^2)^2 +a(-2a^2) + (-2a^2) = 0    simplify

 

4a^4 -2a^3 - 2a^2 = 0   factor

 

(2a^2) (2a^2 - a - 1) = 0

 

Set both factors to 0 and solve

 

2a^2 = 0        (2a + 1) (a - 1) = 0

a = 0                a = -1/2       a = 1

 

Using (1).....

When a = 0, b = 0     (trivial solution)

When a = -1/2 , b = -1/2

When  a = 1, b = -2

 

Proof

 

x^2 + 0x +0 = 0  .......has the root x = 0.....(a,b) = (0,0)

 

 

x^2 - (1/2)x - 1/2 = 0     multiply through by 2

2x^2  - x^2 - 1  =  0  factor

(2x + 1) (x - 1) = 0

Has the roots  x = -1/2  and x  = 1 

So  .....(a,b) = (-1/2, -1/2)

 

x^2 -2x + 1 = 0      factor

(x -1)  (x -1) = 0.......so x = 1 is a root......(a, b) = (1, -2)

 

So......

 

(a, b)  = (0, 0)    (trivial)

(a, b) = (-1/2, -1/2)

(a, b) = (1, -2)

 

cool cool cool

 Nov 30, 2018
edited by CPhill  Nov 30, 2018

8 Online Users