We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
50
3
avatar

Find the ordered triplet \((x,y,z)\)for the following system of equations:

\(\begin{align*} x + 3y + 2z &= 1,\\ -3x + y + 5z &= 10,\\ -2x - 3y +z &= 7. \end{align*}\)

Include the parentheses for the ordered triplet in your answer.

 Oct 27, 2019
 #1
avatar+104932 
+1

x + 3y + 2z  =  1

-3x + y + 5z  =  10

-2x - 3y + z  =  7

 

Add  the first and third equations ⇒   -x + 3z  =  8   

Multiply this by 10   ⇒  -10x + 30z  =  80     (4) 

 

Multiply the second equation by  -3  ⇒   9x -3y  - 15z  = -30

Add this to the first equation ⇒    10x  -13z = -29    (5)

 

Add (4)  and (5)   ⇒  17z  =  51

Divide both sides by  17

z  =  3

 

And 

-x + 3(3)  =  8

-x  +  9  = 8

-x  = -1

x  = 1

 

And

1 + 3y + 2(3)  = 1

1 + 3y + 6  = 1

3y + 6  = 0

3y  = 6

y = - 2

 

So

 

{x, y, z}   =  { 1, - 2, 3 }

  

 

 

cool cool cool

 Oct 27, 2019
 #2
avatar+236 
+2

First, we add the first and third equations to get -x+3z=8. Then, we multiply the first equation by two and add the third equation to that to get 3y+5z=9. Then, we subtract that from the second equation to get -3x-2y=1. Then, we add the first equation to the second and subtract the third equation from that to get 7y+6z=4. This means that we now have the equations

 

-x+3z=8

3y+5z=9

-3x-2y=1

7y+6z=4

 

Looking at the second and fourth equations, we find that y = -2 and that z = 3. Solving for x, we find that x = 1. I'll leave the checking up to you.

 Oct 27, 2019
 #3
avatar+104932 
+1

THX, ThatOnePerson   !!!!

 

 

cool cool cool

CPhill  Oct 27, 2019

18 Online Users

avatar
avatar