+0  
 
0
2380
1
avatar

find the particular solution of the equation f'(x)=2x^(-1/2) that satisfies the condition f(1)=6

 Aug 13, 2015

Best Answer 

 #1
avatar+118723 
+10

find the particular solution of the equation f'(x)=2x^(-1/2) that satisfies the condition f(1)=6

 

$$\\f'(x)=2x^{-1/2 }\\\\
f(x)=\int\;2x^{-1/2 }dx\;\\\\
f(x)=\;\dfrac{2x^{+1/2 }}{1/2}+c\\\\
f(x)=4\sqrt{x}+c\\\\
but\\
f(1)=6\\\\
so\\
6=4\sqrt{1}+c\\\\
6=4+c\\\\
c=2\\\\
so\\
f(x)=4\sqrt{x}+2\\\\$$

 Aug 13, 2015
 #1
avatar+118723 
+10
Best Answer

find the particular solution of the equation f'(x)=2x^(-1/2) that satisfies the condition f(1)=6

 

$$\\f'(x)=2x^{-1/2 }\\\\
f(x)=\int\;2x^{-1/2 }dx\;\\\\
f(x)=\;\dfrac{2x^{+1/2 }}{1/2}+c\\\\
f(x)=4\sqrt{x}+c\\\\
but\\
f(1)=6\\\\
so\\
6=4\sqrt{1}+c\\\\
6=4+c\\\\
c=2\\\\
so\\
f(x)=4\sqrt{x}+2\\\\$$

Melody Aug 13, 2015

1 Online Users

avatar