We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
115
1
avatar

Find the radius of a circle with an x-intercept of -2 if the circle’s center is (2,3) on a coordinate plane.

 

A.9

B.25

C.5

D.16

 Jul 25, 2019
edited by Guest  Jul 25, 2019

Best Answer 

 #1
avatar+8778 
+5

Remember, the radius of a circle is the distance between the center and a point on the circle.

 

The center of the circle is  (2, 3)

The point  (-2, 0)  is on the circle.

 

 

Let's use the distance formula to find the radius.

 

radius  =  distance between  (2, 3)  and  (-2, 0)

 

radius  =  \(\sqrt{(0-3)^2+(-2-2)^2}\)

 

radius  =  \(\sqrt{(-3)^2+(-4)^2}\)

 

radius  =  \(\sqrt{9+16}\)

 

radius  =  \(\sqrt{25}\)

 

radius  =  5

 

Here's the graph: https://www.desmos.com/calculator/bewcrh6lwk

 Jul 25, 2019
 #1
avatar+8778 
+5
Best Answer

Remember, the radius of a circle is the distance between the center and a point on the circle.

 

The center of the circle is  (2, 3)

The point  (-2, 0)  is on the circle.

 

 

Let's use the distance formula to find the radius.

 

radius  =  distance between  (2, 3)  and  (-2, 0)

 

radius  =  \(\sqrt{(0-3)^2+(-2-2)^2}\)

 

radius  =  \(\sqrt{(-3)^2+(-4)^2}\)

 

radius  =  \(\sqrt{9+16}\)

 

radius  =  \(\sqrt{25}\)

 

radius  =  5

 

Here's the graph: https://www.desmos.com/calculator/bewcrh6lwk

hectictar Jul 25, 2019

22 Online Users

avatar
avatar